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Abstract 

This paper presents a spatially referenced energy 

modelling framework of the domestic building stock at 

Low-Voltage (LV) electrical sub-station (i.e. Ridgeway 

New, Newcastle upon Tyne) spatial scale for area-based 

heat electrification project delivery. The framework 

brings together public open sources of data to generate 

hourly energy consumption (i.e. heat fuel and electricity) 

for spatially referenced individual buildings. The 

simulation model has been validated against UK 

Government datasets and the results are presented for the 

LV-area. Our results show that peak household energy 

demands (i.e. peak hourly ratios) are significantly higher 

than expected. In our discussion, we comment on the 

results, validation and model input limitations whilst we 

outlined future work. 

Introduction 

The United Kingdom’s (UK) government ratified the 

Paris Agreement within the United Nations Framework 

Convention on Climate Change. This agreement implied 

pledging to work alongside other developed nations to 

achieve net-zero greenhouse gas emissions by 2050 (as 

per the 2019’s agreement update). Accounting for about a 

fifth of all carbon dioxide emissions and a third of the 

UK’s energy demand (National Statistics, 2020), the 

existing housing stock (≈ 29 million homes) is unarguably 

a key area for decarbonization, and low-carbon housing is 

the way forward. As the vast majority of the homes (≈ 

80%) that will be occupied in 2050 have already been 

built (UKGBC, 2020), retrofitting existing stocks 

represents a larger opportunity for delivering low-carbon 

houses. 

 

Domestic heat electrification has been identified as 

potential decarbonation pathway in which low carbon, 

decentralised generation, smart micro-grids, energy 

storages and electric vehicles technologies are envisaged 

to be mainstream (BEAMA, 2017). However, such 

holistic implementations will require developing a 

flexible and optimised energy network to cope with shifts 

in supply and demand as opposed to solely focusing on 

buildings long-term consumption. In particular, there is a 

need to explore solutions for buildings at the meso-level, 

a level of area analysis that falls between micro-level 

(Individual Buildings) and macro-level (City/ District) 

(Harrison, 2013) (van den Dobbelsteen, Broersma, & 

Stremke, 2012). 

This research seeks to contribute to this growing area of 

research and highlights a strong need to develop a 

comprehensive energy-modelling framework to scrutinise 

the current building stock and assess its potential for a 

holistic heat electrification. The scale of study is set at the 

LV substation level; it is a scale large enough to identify 

patterns of energy consumption and supply beyond the 

boundaries of the single building, but small enough to 

address concrete solutions (Calderon et al. 2019). The 

central thesis of this work revolves around how to 

integrate smart electrically driven domestic heating in a 

data-driven local area-based energy planning approach, 

and what defines an appropriate analytical energy-

modelling framework to do so? 

 

This paper presents a spatially referenced energy 

modelling framework of the domestic building stock of a 

LV electrical sub-station (i.e. Ridgeway New) in 

Newcastle upon Tyne for area-based heat electrification 

project delivery. The framework brings together several 

public open sources of data to generate hourly energy 

consumption (i.e. heat fuel and electricity) for spatially 

referenced individual buildings. In this article, we first 

review current modelling practice to contextualise the 

simulation framework. The developed simulation 

framework (Domestic Energy Model at LV - DEM-LV-)  

is then presented. The results show the model validation 

against UK Government datasets. In the discussion 

section, we elaborate the challenges faced when 

developing this type of models and future areas of work. 

 

Current Practice 

Energy Modelling Approaches 

Jebaraja & Iniyan (2006) has established, there is a vast 

diversity of models and software tools available in the 

area of urban energy systems. Some of it includes energy 

planning models, energy supply-demand models, 

forecasting models (commercial energy models, 

renewable energy models), and optimisation models. 

While the focus of the proposed research is to create a 

comprehensive energy supply and demand planning 

model, other types of energy models can be integrated 

while adding to the data input or adding to the resolution 

of the model (Swan & Ugursal, 2009) (Krstić & Teni, 

2017). 

 

 



uSIM2020 - Building to Buildings: Urban and Community Energy Modelling, November 12th, 2020 

Overview of selected energy models 

General excellent comprehensive and systematic reviews 

on modelling and simulation of buildings energy systems 

such as (Harish & Kumar, 2016) (Hall & Buckley, 2016) 

have been already undertaken. However, there are 

significantly fewer modelling tools which are designed to 

produce accurate energy simulation results at high spatial 

and temporal resolutions needed for this study (i.e. at LV 

scale and hourly). Figure 2 evaluates previous energy 

models in order to identify their current technical 

shortcomings and in which directions they should be 

further improved to pave the path towards residential heat 

electrification (CitySim (Robinson, et al., 2009); Simstadt 

(Nouvel, et al., 2015); UBEM (Reinhart and Davila, 

2016); CityBES (Hong, Chen, Lee, & Piette, 2016); CEA 

(Fonseca, Nguyen, Schlueter, & Marechal, 2016)). 

 

In previous research, the focus was on critical aspects 

related to urban energy systems design on a wide scale 

while a comprehensive domestic heat electrification 

model requires a smaller area of study. Taylor, et al. 

(2013) reported that at a small scale, a higher level of 

details is required. This could be translated by a high level 

of individual urban buildings’ data input and by a more 

focused thermal zone analysis. While much work 

simulated urban buildings as single thermal zones 

(Nouvel, et al., 2015) (Fonseca, Nguyen, Schlueter, & 

Marechal, 2016), few are the ones that achieved urban 

buildings simulation as multi-thermal zones (Robinson, et 

al., 2009). Again, simulating several thermal zones rely 

on the abundance of accessible data. A multi-thermal zone 

analysis means the division of urban buildings per floors, 

or even more, per rooms. In a comprehensive study of the 

level of details required by an urban energy model, 

Taylor, et al. (2013) found that adding internal partitions 

has a significant impact on the accuracy of the model. The 

authors argued that possible reasons are greater thermal 

mass due to more internal walls, or difference in the 

utilisation of solar gains.  Furthermore, a higher level of 

details means a higher simulation time-step resolution. 

Ultimately, hourly or even half-hourly simulation results 

would be beneficial to model the spatiotemporal energy 

pattern within local areas. Given all that has been 

mentioned so far, one may suppose that a satisfactory 

domestic heat electrification model should be situated as 

following within the existing modelling approaches. Of 

the reviewed models, only CEA model has been designed 

with a sufficiently high spatial resolution for the purpose 

of our study (i.e. micro-neighbourhood level). However, 

the CEA tool relies on archetypes (Fonseca, Nguyen, 

Schlueter, & Marechal, 2016) for building 

characterisation as opposed to uniquely and spatially 

defined (i.e. UPRN) buildings. Similarly, assigning data 

at individual urban building level is either not clearly 

specified or relies mainly on disaggregation assumptions 

(Robinson, et al., 2009) (Hong, Chen, Lee, & Piette, 

2016). 

 

Simulation Framework 

In this section, the developed spatially and uniquely 

referenced (i.e. UPRN) domestic building energy 

modelling framework and the use data sources are 

presented. The presented simulation model is able to 

generate hourly energy consumption (i.e. heat fuel and 

electricity) for spatially referenced individual buildings. 

The simulation has been developed following Reinhart et 

al.’s (Davila, Reinhart, & Bemis, 2016) approach and 

implemented in Rhino Grasshopper. Geometrical and 

non-geometrical individual building level data as well as 

weather data are fed into Energy Plus so as to produce 

hourly heat fuel and electricity consumption profiles for 

individual buildings (see figure 1). In this paper, we use 

Ridgeway (New) as our case study area. Figure 4 shows 

one of the identified areas: Ridgeway (New). In this figure 

(see Figure 4), the light colour dots represent individual 

houses (i.e. 228 in total) associated to the LV substation 

(i.e. the electric tower icon). 

 

 
Figure 1: Simulation framework overview 

 

The following analytical framework (see Figure.3) is 

structured as per the five main modelling pillars identified 

by (Reinhart & Davila, 2015). The five pillars are data 

collection, model characterisation (data preparation 

model), model generation (pre-simulation model), model 

simulation (main simulation model) and model validation 

(analysis model). 

 

Data Collection 

Access to data can be a significant challenge and the 

interactions between network operators, local government 

and academia can vary in different areas. In this paper, we 

identified open-sourced urban data required for a high-

spatio temporal resolution model and balanced out the 

amount of urban data available and the inevitable number 

of assumptions made. Table 1 summarises the collected 

urban data by subcategories: building stock geometric 

data, building stock non-geometric data, and weather 

data. 
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Figure 2: Urban Energy Modelling approaches review. 

 

 

 

 
Figure 3: Urban Energy Modelling framework 

 

 

 

Table 1: Data subcategories, input variable, sources and year
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Figure 4: Areal and schematic view of domestic housing 

stock fed by one LV substation. As per real data 

provided by the Newcastle City Council. 

 

Model characterisation 

The domestic Housing Stock Characterisation model 

organises, modifies and integrates urban data from 

different sources into a new dataset processed as part of 

the pre-simulation model. The core structure of the data 

preparation consists of four streams of data flows. 

 

The first data stream is concerned with sorting and 

transforming gathered necessary property database 

(building geometries, functions, demographics, etc.).  

 

Ordnance Survey (OS) EDINA Digimap data include 

buildings’ geometry polygons which were then simplified 

in order to provide the base for extrusion of the 2.5D 

model. The Building footprint Geographic Information 

System (GIS) shape file attributes are limited to basic 

geometric information such as building height, building 

TOpographic IDentifier (TOID), and postcode. For an 

inclusive modelling, secondary OS data might be found 

but is not limited to, land use, power network, streets, and 

topographical data. 

 

AddressBase Premium (ABP) dataset gives the most up 

to date, accurate information about addresses, properties 

and land areas where services are provided (O.S. 2018). 

In order to enrich the EDINA GIS data, the ABP layer 

attributes were merged with the initial polygons layer. 

TOID information and Unique Property Reference 

Number(s) (UPRNs) were used as a common ground to 

match both datasets into one large Comma-Separated 

Values (CSV) file. The task was achieved using QGIS 

2.18 and Microsoft Excel. 

 

The second data stream scrutinises open sourced EPC 

data and extracts necessary individual building data, 

identified by their UPRNs. Namely, data about domestic 

building envelope conditions and energy systems. These 

data were then sorted out in an excel sheet and used as an 

input for the simulation model. 

Building fabric (wall, roof and floor) EPC options were 

narrowed down to categories as such: Walls (Solid wall, 

cavity wall with no insulation and insulated wall), Floors 

and roof (insulated and non-insulated). Similarly, the 

following categories were identified for the glazing 

system (single, double and triple glazing). Then, a typical 

envelope U-value was assigned respectively (Designing 

Building Wiki, 2020). G-value was assigned as a constant 

for all type of glazing. Although a typical glazing to wall 

ratio was assigned initially to the whole building stock, 

whenever available the glazing ratio was refined to match 

the total property glazed area identified in the EPC. 

The main heating fuel and system(s) were identified from 

the EPC data as well. Example systems include Boiler 

system with radiators, warm air system and room heater. 

Similarly, for Domestic Hot Water (DHW), options were 

identified with central heating, dedicated boiler or electric 

immersion heater. For each of the systems a system 

efficiency was assigned accordingly. Note that only gas 

heating fuel options were considered for this study. 

 

The third data stream relates to household characteristics. 

To estimate the household count and the occupancy 

behaviour, socio-demographic information was gathered, 

at an Output Area (OA)/ postcode level, from several 

open-source data (SC, 2018) (ONS, 2018), then joined, 

aggregated and assigned per UPRN. Additionally, below 

are some of the model input assumptions made: 

 Zone loads. Whenever occupant number is not 

available an estimated people density figure 

(person/m2) was assigned (Palmer and Cooper 2013). 

 The heating setpoint schedule was set to 18:00 to 

06:00 or 24 hours based on the employment status, 

and household occupation collected data. 

 Domestic appliances use profiles was set for all 

domestic dwellings as per (Palmer and Cooper 2013). 

A constant equipment power density (W/m2) and a 

lighting power density (W/m2) was assigned. 

 DHW demand was assigned per capita per UPRN 

(m3/hour/person) as per (Chmielewska et al. 2017). 

 

Finally, the fourth data stream is the simulation weather 

data. To adequately consider local weather conditions, a 

Typical Reference Year (TRY) climate data for 

Newcastle Upon Tyne was used (PROMETHEUS, 2011) 

Future work might entail microclimatic data simulation 

which can be simulated using ENVI-met software 

recently added as a plug-in to Rhino-Grasshopper. 

 

Model generation 

The resulting dataset from the first data stream in model 

characterisation was fed into a generic algorithm in 

Grasshoper/Rhino to generate the 2.5D massing (i.e. flat 

roof models) all identifiable by their UPRNs (see Fig. 5). 

Subsequently, the non-energy consuming UPRNs were 

zoned out the study and 228 thermal zones were identified 

out of the 248 domestic dwellings in Ridgeway (New). 
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Figure 5: 2.5D model: building’s height 

 

Geometry validation 
“Ground-truthing” of the selected area was carried out to 

empirically test building geometry and property data 

matching procedure. Common geometry parameters (i.e. 

total floor area and building height) can be found in the 

EDINA Digimap and the ABP datasets. After these two 

datasets were brought together, only 0.02% (6 out of 228) 

of the buildings had a mismatch of geometry data. These 

were then crossed checked on Google Earth Pro (2018), 

and an estimate of the mistaken building heights is drawn. 

Subsequently, Google Street View® was used to spot 

whether building classifications correspond to the ‘truth’ 

on the ground. A random selection of entries was 

manually revisited to verify the automatically generated 

base model. Parameters checked include window to wall 

ratios, property types and buildings’ heights. 

 

Model simulation 

Taking as input detailed building information from the 

described data streams, the simulation model is able to 

generate hourly energy consumption at a high spatial 

resolution, one of individual buildings entries. 

Results 

The simulation outputs comprise of four estimated energy 

uses: space heating, electrical equipment loads, lighting 

loads, and DHW, which were then grouped as the 

following. Heat fuel represents space heating and DHW, 

whereas electricity represents lighting and electrical 

appliances. For validation purposes, the simulated energy 

outputs were compared with empirical data provided by 

the National Energy Efficiency Data Framework (NEED) 

(BEIS, 2019). The NEED data provides energy 

consumptions by both house type and by floor area band 

by each UK local authority.  

 

Validation 

In general, the simulation recorded output provides 

confidence in the model’s calculation, with an averaged 

error percentage of 12%. This is broken down as follows: 

10% for electricity consumption and 14% for heat fuel 

consumption (see Table 2). Whereas, the validation 

results compare well with NEED, the simulated figures 

appear to always being lower than the NEED reference. 

Table 2: Median annual heat fuel and electricity 

consumption comparison. 

House Type DEM-LV 

(kWh) 

NEED 

(kWh) 

Difference 

(%) 

Heat Fuel 10,966 12,740 -14 

Electricity 2,411 2,689 -10 

 

Floor area bands-based comparison 

To compare results on a floor area band basis with equal 

weighting, it is appropriate to consider a uniform range of 

floor areas to comply with NEED data categorisation. The 

simulated building stock within Ridgeway (New) 

neighbourhood were aggregated per NEED floor area 

bands as such: 50 or less, 51 to 100, 101 to 150, 151 to 

200 and over 200 m2. Energy consumption results per 

floor area band, were then averaged and compared with 

NEED data energy estimates (see Tables 3 and 4). The 

number of dwellings by area-band within the 228 

dwellings sample is also shown in the below tables. 

 

Table 3: Electricity consumption comparison by floor 

area bands in kWh between NEED and present work 
 

Floor Band 

(m2) 

DEM-

LV 

(kWh) 

NEED 

(kWh) 

Difference 

(%) 

Simulated 

Sample 

(Dwellings) 

50 or less 1,182 1,936 -39 7 

51 to 100 2,230 2,508 -12 193 

101 to 150 3,321 3,118 6 22 

150 to 200 5,947 3,959 54 3 

Over 200 6,740 5,103 32 3 

 

Table 4: Heat fuel consumption comparison by floor 

area bands in kWh between NEED and present work 
 

Floor Band 

(m2) 

DEM-

LV 

(kWh) 

NEED 

(kWh) 

Difference 

(%) 

Simulated 

Sample 

(Dwellings) 

50 or less 6,255 7,547 -18 7 

51 to 100 11,296 11,408 -1 193 

101 to 150 13,928 16.252 -15 22 

150 to 200 14,207 22,841 -38 3 

Over 200 24,050 29,956 -20 3 

 

House type-based comparison 

To compare results on a property type basis with equal 

weighting, it is appropriate to consider similar 

categorisation as NEED data. The simulated building 

stock within Ridgeway (New) neighbourhood were 

aggregated per property type as such: Detached, semi-

detached, end-terrace, mid-terrace, bungalow, converted 

flat, and purpose-built flat. The last three categories do not 

exist within the Ridgway New neighbourhood, thus were 

excluded in the comparison analysis. Energy consumption 

results were then averaged per property type and 

compared with NEED data energy (see Tables 5 and 6). 

The number of dwellings by house-type within the 228 

dwellings sample is also shown in the below tables. 
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Table 5: Electricity consumption comparison by house 

type in kWh between NEED and present work 

 

House Type DEM-

LV 

(kWh) 

NEED 

(kWh) 

Difference 

(%) 

Simulated 

Sample 

(Dwellings) 

Detached 3,685 3,599 2 22 

Semi-Detached 2,220 2,996 -26 86 

End-Terrace 2,334 2,762 -16 35 

Mid-Terrace 2,307 2,847 -19 85 

 

Table 6: Heat fuel consumption comparison by house 

type in kWh between NEED and present work 
 

House Type DEM-

LV 

(kWh) 

NEED 

(kWh) 

Difference 

(%) 

Simulated 

Sample 

(Dwellings) 

Detached 13,390 17,843 -25 22 

Semi-Detached 11,862 15,248 -23 86 

End-Terrace 9,337 12,251 -24 35 

Mid-Terrace 9,275 12,521 -26 85 

 

Fuel and electricity domestic building stock profiles 

The modelling framework results are presented at the LV-

area scale but results at archetype and individual building 

scales can also be obtained (Aoun and Calderon, 2020).  

 

Figure 6 shows the average heat fuel and electricity 

energy consumption for all the 228 domestic dwellings in 

Ridgway (New) with a winter (January) heat peak of 

1,828 kWh and a thorough of 177 kWh in August. 

Electricity consumption has a flatter profile with winter 

(January) peak of 323 kWh and a thorough of 109 kWh in 

August. As understanding peak energy consumption is 

critical for heat electrification planning in Ridgeway 

(New), the rest of our analysis focuses on January (peak 

month) at hourly temporal resolutions. Figure 7 shows 

average hourly electricity and heat fuel consumptions 

throughout the month of January for all 228 dwellings in 

Ridgeway (New) with heat peak of 2,538 kWh between 

22:00 and 6:00 hours and an electricity peak of 0.970 kWh 

between 17:00 and 20:00 hours. 

 

 

Figure 6: LV area monthly average total electricity and 

heat fuel consumption in kWh 

 

 

Figure 7: LV area January hourly average total 

electricity and heat fuel consumption in kWh 

Discussion 

Validation and results 

In general, as shown in Table 2, the results compare 

favourably with NEED but simulated figures always 

being lower than the NEED reference.  This is expected 

as the overarching purpose of NEED is to monitor 

progress on energy efficiency improvement measures to 

the UK housing stock and it will be biased towards houses 

with insulation upgrades (i.e. having a high energy 

consumption). Thus, NEED estimations should be higher. 

 

Furthermore, a significant proportion (69%) of the 

estimated housing stock has a floor area band of 51m2 to 

100m2. For this segment, our heat fuel and electricity 

validation results show higher alignment with NEED 

data, -1% and -12% respectively (see Tables 3 & 4). There 

are however some caveats. A significant increase in the 

percentage of error was observed in the floor area bands 

classification for both electricity and heat fuel 

consumptions. High percentages of errors ((Simulated 

Figures - NEED data) / NEED data) were observed at 

bands 50 m2 or less (-17% for heat fuel, -39% for 

electricity), 151 to 200 m2 (-38% for heat fuel, 54% for 

electricity) and over 200 m2 (-20% for heat fuel, 32% for 

electricity). The results mismatch could be explained by 

the few numbers of the estimated domestic houses (i.e. 

sample) which fall under this category. For instance, out 

of the 228 houses, 7 fall under the 50 m2 or less category, 

3 fall under the 151-200 m2, and another 3 fall under the 

over 200 m2 category. Whereas for NEED data, 11,932 

falls under the 50 m2 or less category, 5,464 fall under the 

151 to 200 m2, and 2,082 fall under the over 200 m2. The 

high error ranges can be argued that they are due to our 

samples being small and also with local characteristics not 

fully captured in a national survey such as NEED. 

 

The results suggest that urban energy prediction accuracy 

can be increased significantly by using disaggregated data 

at building level. The reported error range validated at an 

aggregate buildings scale varied in between 7 to 66% 

when based on archetypes (Reinhart & Davila, 2015). 

However, the presented work error range is between 1 to 

26% when based on individual building data. Thus, 

suggesting that validation results should be further 

inspected at an aggregate and individual building scale. 



uSIM2020 - Building to Buildings: Urban and Community Energy Modelling, November 12th, 2020 

Model Spatiotemporal Resolution 

With the monthly energy figures, the electricity 

consumption is keeping more or less the same trend 

throughout the year with an average of 200 kWh (see 

Figure 6). However, electricity demands variations were 

observed at a higher temporal granulate with hourly data 

provided (see Figure 7). Thus, we see as an indication that 

this type of models would even benefit further from 

higher temporal resolution (e.g. down to half-hour 

simulation steps). 

 

In regards to heat fuel demands, monthly profiles indicate 

a peak demand in January, and the hourly profiles looks 

at the use profile shaping up daily peaks. In the provided 

figure heat fuel was peeking up night time from 22:00 to 

06:00 and this is linked to the assumption made the 

heating setpoint profile activated between 18:00 and 

06:00 for all employed occupants. 

 

The peaks and troughs in heat demand, both within a day 

(see Figure 7) and across the seasons (see Figure 6), are 

far greater than the variations in electrical demand. 

January LV area energy figures shows that the heat fuel 

demand has five times greater peak when compared to 

what is expected from a national study (McLean et al. 

2016). These bumpy peaks make the energy supply more 

volatile so that a back-up storage system will be necessary 

for reliability of supply. The proposed modelling 

framework will enable to assess, for example, the 

following scenarios separately or combined: 

 A higher penetration of electrical heating which may 

help balancing out the demands and smoothing out 

the energy consumption curves throughout the year, 

month or day. 

 Peak shaving solutions and load shape altering 

mechanisms which include measures such as thermal 

storage, demand response, and time-of-use tariffs. 

 

Model Input limitations 

The largest remaining limitation is due to tightly restricted 

access to measured building energy use as well as 

generally insufficient knowledge of the thermal properties 

of buildings which in this framework where depicted from 

individual building’s EPC data.  

 

The inaccuracy in the recorded simulation output might 

be the result of the following model input limitations:  

 Opting for a 2.5D extrusion model due to the 

restricted access to Light Detection and Ranging 

(LiDAR) data at the time of the study. More 

sophisticated 3D models can be obtained by 

accessing LiDAR data from EDINA Digimap. 

 Urban buildings have been simulated as singular 

thermal zones. Whereas, the study could benefit from 

a more comprehensive zoning of buildings per floor 

level or even per floorplans as explained in the 

current practice section. 

 Assumptions made such as a constant energy use 

profiles and heating system efficiency, envelope 

insulation simplified figures, and constant estimated 

infiltration rates based on the construction age. 

 Individual building’s occupant behaviour, in most of 

the instances, was derived from the available 

postcode level data which will have a direct effect on 

the pattern of use (Bacher & Paone, 2018). 

 

Model next steps 

Future work should look at the association between 

variables in the model in detail and further validate 

individual building simulated data against measured data 

(i.e. energy bills). Relevant model variables include 

building characteristics (building height, type, size, and 

age), urban attributes (terrain topography, urban massing 

and context shading) and occupant characteristics (total 

occupants, household size, worker density, weekly 

working hours, and employment status and jobs).  

Furthermore, future research should aim to improve the 

integration of the power network within urban buildings 

energy modelling and explore a higher model temporal 

resolution (e.g. half-hour simulation steps). 
 

Conclusion 

This paper has presented a spatially referenced energy 

modelling framework of the domestic building stock at 

Low-Voltage (LV) electrical sub-station (i.e. Ridgeway 

New, Newcastle upon Tyne) spatial scale for area-based 

heat electrification project delivery. Our results have 

shown that peak household energy demands (i.e. peak 

hourly ratios) are significantly higher than expected. 

However, validation and model input limitations should 

be addressed so as to develop the next generation of 

models. 
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