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ABSTRACT  

Modeling of indoor airflows using 

computational fluid dynamics (CFD) 

techniques can be difficult and time 

consuming, especially for complicated 

problems or for big buildings. A fast and 

accurate CFD solver can significantly shorten 

the time of the analysis with acceptable 

accuracy for engineering analysis. The aim of 

this paper is developing a fast and accurate 

CFD solver to simulate indoor airflow 

problems at real time. To achieve this goal, we 

use a combination of Eulerian and Lagrangian 

algorithms, namely semi-Lagrangian method, 

equipped with one well-known mathematical 

method, multigrid solver, to increase the 

convergence rate. In the present algorithm, 

convection term is solved by semi-Lagrangian 

algorithm and diffusion term and Poisson 

equation are solved by an implicit and V-cycle 

multigrid solver. The results show that we can 

use large time steps without any instability 

problem and consequently achieve better 

convergence in comparison with standard 

semi-Lagrangian algorithms and conventional 

Eulerian methods. Additionally, we discussed 

the stiffness of solving the Poisson equation  

 

 

that was not found in the previous works of 

semi-Lagrangian method.  

INTRODUCTION  

Modeling of indoor airflows using 

computational fluid dynamics (CFD) 

techniques can be difficult and time 

consuming, especially for complicated 

problems or for big buildings. A fast and 

accurate CFD solver can significantly shorten 

the time of the analysis with acceptable 

accuracy for engineering analysis, in 

particular, for building industry. For example, 

building engineers can benefit from this solver 

in the initial design stage to design a good and 

optimized air conditioning and ventilation 

system without lengthy and detailed 

engineering analysis. Additionally, in the later 

operating stage of a building, the fast solver 

can play a crucial role in building operation 

and controls, for example, when an 

emergency, e.g. fire, happens in a building, the 

solver may provide real-time control strategies 

to help rescuers control the fire or manage 

occupants’ evacuation in the building. Another 

example of the emergency situations is the 

spreading of polluted air in a building. With a 



real-time and accurate solver, we will be able 

to understand how the pollutant spreads in the 

building at real time from the source, and 

possibly predict future states of the spreading 

so we can react before any damages on 

occupants’ health may occur.   

Conventional CFD solvers, such as those 

based on Eulerian and Lagrangian methods, 

often perform unsatisfactorily for big and 

complicated indoor airflow problems. In the 

Eulerian algorithms, we consider our fluid as a 

continuum fluid. Then we define a fixed 

computational domain, Eulerian mesh, within 

our real domain. Finally, we consider all fluid 

flow variables, including pressure, velocity, 

density, etc., as fields, a function of space and 

time, within the fixed computational domain, 

and develop and solve the conservation 

equations on a control volume basis. A fast 

CFD solver often replies on explicit 

algorithms, where there is one important 

constraint, CFL (Courant-Friedrichs-Lewy) 

condition, causing the time step to be small 

enough to ensure numerical stability but 

potentially slow down the simulation 

significantly. In the Lagrangian algorithms, we 

will consider our fluid in the flow as a large 

number of individual particles. Then we follow 

each particle’s path, characteristic curves, and 

by this way, we will solve conservation of 

equations. Although the CFL condition may 

not be relevant in this algorithm, the 

computational domain, the Lagrangian mesh, 

is not fixed so new computational domain 

needs to be generated at each time step, which 

results in a more complicated and even slower 

solution. More details about these two 

approaches are presented through the 

literatures (Shirolkar (1996), Loth (2000), 

Lakehal (2002)).  

During past decades, many researchers tried to 

develop some other solvers to simulate indoor 

environment such as zonal and multizone 

models (Eriksson et al., 2002, Wang et al., 

2008). Many simplifications are considered to 

achieve simpler and faster solvers than 

Eulerian and Lagrangian methods. But their 

major deficiency is the simulation accuracy is 

case dependent and cannot be guaranteed for 

all cases.   

There are increasing amount of efforts finding 

a fast and accurate approach known as 

semiLagrangian approach, which is a 

combination of both Eulerian and Lagrangian 

methods. In fact, this method considers the 

fluid as a large number of discrete particles, 

then follows their path and finally transfers 

them to the Eulerian mesh realized by an 

interpolation scheme. Semi-Lagrangian 

method is fundamentally explicit without the 

CFL constraint so it is unconditionally stable, 

allowing large time steps. Additionally it does 

not need to regenerate computational domain 

at each time step as the Lagrangian methods 

do.  

Among all these efforts, this paper reports a 

fast CFD solver for solving indoor airflow 

problems at real time based on the 

semiLagrangian method (Courant et al., 1952, 

Staniforth et al., 1991, Zuo et al., 2009, Jin et 

al., 2015). Previous researchers (Zuo et al., 

2009, Jin et al., 2013, Jin et al., 2015) 

developed a Fast Fluid Dynamics (FFD) 

method based on the semi-Lagrangian method 

to simulate indoor airflow problems. For 

example, Jin et al. (2013) used this algorithm 

to simulate natural ventilation around and 

inside a single room, buoyancy driven inside a 

single room, and also airflow inside a complex 



room. In the previous works most effort was 

spent to apply semi-Lagrangian method and 

improve its accuracy. Based on our 

knowledge, most of the computing time of a 

FFD simulation is consumed when solving the 

diffusion terms in the momentum equations 

and Poisson equation. The accuracy problem 

associated with mass imbalance of the FFD 

method can also be caused by a poor linear 

solver. Thus in this paper, we try to improve 

the performance of the momentum and 

Poisson equation solvers by using a 

wellknown numerical method, multigrid 

solver, to increase the convergence rate. This 

paper reports the first effort of developing a 

fast and accurate CFD solver: the combination 

of semi-Lagrangian and multigrid methods 

with a new in-house 3D CFD code using 

C++programming language.   

Here we solve convection and diffusion terms 

in the Navier-Stokes (N-S) equations 

separately. The convection term is solved by 

first-order semi-Lagrangian algorithm and the 

diffusion term is solved by an implicit 

multigrid (MG) solver (Wesseling, 1995, 

Briggs et al., 2000). Here we use V-cycle with 

three different levels of computational girds in 

the multigrid.   

In the current project, our main concern was 

the speed of our solver and we tried to speed 

up the convergence rate. In the present study, 

we observed that the huge amount of our 

running time in each time step is consumed by 

solving the Poisson equation. This problem 

was not found and studied with details in the 

previous studies (Staniforth et al., 1991, Zuo et 

al., 2009, Jin et al., 2013, Jin et al., 2015).   

  

METHODOLOGY  

In this section, we explain the methodology for 

solving the N-S incompressible flow. 

Equations (1) and (2) shows the continuity and 

the momentum equations.  

 (1)  

 (2)  

  

where 𝑈𝑖, 𝑥𝑖, 𝑓𝑖 are velocity, space, and source 

term vectors in i direction. 𝑡, 𝑥, 𝜌, 𝜇 are time, 

space, density, and dynamic viscosity of the 

fluid. The first term on the right hand side of 

Eq. (2) is the advection (or convection) term. 

The second term is the diffusion term followed 

by the pressure gradient term.   

To solve Eqs. (1) and (2), we used the 

projection method based on the decomposition 

theorem, namely the Helmholtz-Hodge 

Decomposition. Chorin used this method to 

solve incompressible N-S equations (Chorin 

1967). In his algorithm, we have three step: 

first, we calculate the intermediate velocity 

field by solving Eq. (3).  

  (3)  

Then we apply the divergence free condition 

for an incompressible flow field, the continuity 

equation, to Eq. (3) and calculate a new 

pressure field:  

  (4)  

Eq. (4) is a Poisson equation and this step is 

called the projection step. The next final step 

is the correction step, where we calculate a 



new velocity field by using the new pressure 

field as shown in Eq. (5).  

 (5)  

  

In the current work, we use a first-order time 

splitting or fractional step method to solve Eq.  

(3) by the following three-step procedure.  

  

  

  

The procedure of solving incompressible N-S 

equation in the present work is thus:   

  

The first step of solving the diffusion and 

source terms is approximately similar to the 

projection term, for which we use geometric 

multigrid method. For the advection step, we 

use a first-order backward semi-Lagrangian 

algorithm. In the following, we will explain the 

details of the multigrid solver and 

semiLagrangian used in the present work.   

MULTIGRID  

Multigrid method is a very powerful and useful 

method to iteratively solve differential 

equations. This method was developed to 

accelerate the convergence rate of 

conventional iterative methods, such as Jacobi 

and Gauss-Seidel methods. The procedure of 

this method is solving the equation on the 

coarse grids to damp the low frequency errors 

and increase the convergence rate.  

In this paper we use V-cycle geometric 

multigrid with three levels: fine grid, average, 

and coarse girds as shown in Figure 1.   

Multigrid method has three main steps (Briggs 

et al., 2000):  

1. Smoothing: solving the main equation 

on the fine grid by using a few iterations of a 

conventional iterative method, such as Jacobi 

and Gauss-Seidel methods.   

2. Restriction: solving the error equation 

on the coarse grid by transferring the data from 

fine to coarse grids.   

3. Interpolation or prolongation: 

transferring the calculated errors to fine girds 

and modifying the data calculated from 

smoothing step.  

  
Figure 1. Interpolation and restriction in V-Cycle multigrid solver  

For Eqs. (4) and (6), We can cast them in a 

general matrix form after linearization:  

 𝐴𝑈𝑖 = 𝑏𝑖  (9)  

where 𝐴 is the coefficients’ matrix. Eq. (9) is 

solved by two iterations of the Gauss-Seidel 

method on the fine grid to find 𝑉𝑖, the 



approximate of 𝑈𝑖. Then we calculate the 

residual 𝑅𝑖:  

 𝑅𝑖 = 𝑏𝑖 − 𝐴𝑉𝑖  (10)  

We then write the error equation 𝑒𝑖 = 𝑈𝑖 − 𝑉𝑖:   

 𝐴𝑒𝑖 = 𝑅𝑖  (11)  

The next step is to transfer the solution of the 

error equation from the fine grid to the average 

grid, so-called the restriction step, by ten 

Gauss-Seidel iterations on the fine grid. For 

transferring, we used a first-order linear 

interpolation scheme in all three mesh 

directions. Then the whole procedure, 

recalculating residual, reconstructing error 

equation, and retransferring the error equation 

from average grid to coarse grid, will be 

repeated on the coarse grid. Then we go to the 

final step, the interpolation step when we 

transfer the results of the error equation from 

the coarse grid to the average grid by the linear 

interpolation. Here we solve the error equation 

by two Gauss-Seidel iterations for smoothing 

followed by the linear interpolation to transfer 

the results of the error equation from the 

average grid to the fine grid. Now the new 

velocity values can be found from the 

correction:  

 𝑈𝑖 = 𝑒𝑖 + 𝑉𝑖.   (12)  

If the convergence criterion is satisfied, we go 

to the next time step. Otherwise the whole 

procedure is repeated.   

SEMI-LAGRANGIAN  

As mentioned before here we used the 

firstorder semi-Lagrangian algorithm to solve 

the advection term, Eq. (7), rewritten in a 

Lagrangian form:  

 𝐷𝑈𝑖 𝜕𝑈𝑖 𝜕𝑈𝑖 (13)  

  

Now we solve the Lagrangian form or material 

derivative with first-order accuracy:  

 (14)  

  

Based on the Lagrangian derivative, if we 

consider the fluid inside the flow consists of a 

lot of small particles, we can calculate the 

particles’ velocity by tracing back the 

particles’ path.   

  (15)  

  
Figure 2. Sketch of computing new velocity field by 

semiLagrangian method.  

Figure 2 shows that the calculation of the 

velocity at 𝑥𝑜𝑙𝑑 needs an interpolation scheme. 

Here we use a linear interpolation scheme and 

calculate the velocity at 𝑥𝑜𝑙𝑑 by using the 

values of the neighbor cells, a, b, c, and d in a 

2-D setup as an example.  



ERROR DEFFINITION  

In the present work, two error definitions are 

used. Solving the diffusion and projection 

equations by multigrid solver, the error is the 

residual calculated by Eq. (10). Here the error 

for solving the diffusion terms is calculated by 

the velocity terms on the fine grid and for the 

projection equation is calculated by the 

pressure variable on the fine grid.   

In this solver we also defined another error to 

show when the results achieve steady state 

conditions. Here the error is defined by the 

maximum difference between the value of the 

velocity field at the current time step and the 

previous time step. The convergence criterion 

for both errors is 1×10-7.   

SIMULATION  

In this section first we will solve the 

wellknown 3D lid-driven cavity flow problem 

and compare our results with conventional 

finite volume methods. The accuracy and time 

step used in semi-Lagrangian and 

conventional finite volume method will be 

discussed including the discussion of the 

convergence rate of the MG solver added to 

the semiLagrangian solver. The computational 

domain of the cavity flow is a cube (1 × 1 × 1 

𝑚3) with 64,000 structured nodes (40 × 40 × 

40 for the three directions). The lid velocity at 

the top is set to 1 m/s. All other surfaces are 

fixed walls. Then, we will solve heat 

conduction problem with the same 

computational domain to investigate the 

efficiency of our multigrid solver.   

RESULTS  

Figure 3 shows the velocity vectors on the 

middle-section of the cube, x-y surface in the 

Cartesian coordinate. In the previous study (Jin 

et al. 2013), the researchers mentioned that the 

semi-Lagrangian methods has some problems 

to capture recirculation flows. From visual 

inspection, the current solver is shown to be 

able to capture the recirculation flow field 

well.    

 
Figure 3. Velocity vectors of the cavity flow  

In Figure 4, we compare our results with the 

conventional finite volume method (FVM) for 

different time steps, 𝑑𝑡 = 0.001, 0.01, 0.1 s. 

Note that with conventional FVM method, we 

cannot use 𝑑𝑡 > 0.001 s because of the 

stability problem as related to the CFL 

condition. But thanks to the semi-Lagrangian 

of the new solver, we can use larger time steps.   



  
Figure 4. Comparison of velocity magnitude on the center line of the 

computational domain in the cavity flow.  

Figure 4 also shows that a large time step 

decreases the simulation accuracy when using 

the finite volume method (FVM) method as a 

baseline for comparison. This problem has 

been reported by the previous studies. The 

accuracy can thus be improved by using small 

time steps or higher order methods, e.g. 

second-order semi-Lagrangian methods. We 

can also improve the accuracy by using high 

order interpolation schemes.   

The advantage of using multigrid solver can be 

shown by comparing to simple solvers such as 

Gauss-Seidel. For the same convergence 

criterion of 1×10-7, Table 1 shows that the MG 

solver is about 5 times faster than the G-S 

solver. To show the advantage of the MG 

solver, we modify the cavity case by only 

solving the diffusion term, the Laplace 

equation so the problem becomes a purely heat 

conduction problem.  

 𝜕2𝑇 𝜕2𝑇 𝜕2𝑇 (16)  

  

Figure 5 shows the results of the heat 

conduction problem with the following 

boundary conditions, (temperatures on the 

different walls are defined as non-dimensional 

values):  

𝑇𝑡𝑜𝑝 𝑓𝑎𝑐𝑒 = 1.0, 𝑇𝑜𝑡ℎ𝑒𝑟𝑠 = 0.0  

 
Figure 5. 3 dimensional heat conduction problem  

  
Table 1. Comparison of execution time for simple GS solver and 

multigrid solver.  

  Multigrid (V-cycle)  Simple (Guess-Seidel)  

Cavity flow  26.09 [s]  129 [s]  

Heat Conduction  1.68 [s]  11.98 [s]  

For the heat conduction problem, the MG 

solver is about 7 times faster than the GS 

method.   

The previous studies did not investigate and 

report the significance of each term in the 

conservation equations in terms of computing 

time and accuracy. In the following, we try to 

investigate which part of our equations is more 

time consuming. Figure 6 shows the 

convergence rate of solving the diffusion terms 

of the momentum equations in three different 

directions. For the criterion of 1×107, the 

convergence is satisfied after ten iterations in 

all directions. In comparison, Figure 7 shows 

that the number of iterations for the Poisson is 

about 350 for convergence. It means that most 

of the computing time, due to the numerical 

operations, is caused by solving the Poisson 



equation not the diffusion equation. Here the 

error is the residual calculated by Eq. (10). 

Therefore, the computational speed can be 

further improved by other advanced numerical 

solvers for the Poisson equation, such as 

adding successive over relaxation methods 

(Saad 2003).   

 
Figure 6. Error vs number of iterations when solving the diffusion 

term in x, y and z directions.  

 
Figure 7. Error vs number of iterations of solving the Poisson 

equation.  

  

CONCLUSION  

In the applications of building engineering, we 

often encounter big computing domains during 

a CFD analysis, such as a building with many 

rooms and many stories. A conventional CFD 

solver is often not impractical to use in this 

case, because it is too computationally 

demanding. Meanwhile other methods such as 

zonal and multizone models are not accurate 

enough to capture all characteristic of the 

flows. Semi-Lagrangian method is a fast 

algorithm that can improve the speed of CFD 

simulations. Additionally multigrid method is 

one of the well-known fast numerical solvers 

for iteratively solving differential equations. In 

the current work we combined both of these 

methods and increased the convergence rate of 

the standard semi-Lagrangian method. The 

results show convergence rate is improved.   

It is also found that using large time steps can 

affect the simulation accuracy negatively. For 

better accuracy, we have two options: small 

time step and the higher order algorithms. The 

first choice seems not preferred because small 

time steps slow down the solver so higher 

order algorithms should be the solution for the 

future work. From this study, we also found 

that the Poisson equation is the major road 

block for increasing the computational speed, 

which can be achieved by adding advanced 

solutions, such as successive over relaxations, 

to the multigrid solver. In the future, for the 

applications of using this solver for indoor 

airflow problems, it is also necessary to add 

turbulence models and probably using 

advanced hardware, such as graphical 

processing unit (GPU), to further accelerate 

the CFD solver.   
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