
A FAST AND ACCURATE CFD SOLVER FOR INDOOR AIRFLOWS

Mohammad Mortezazadeh Dorostkar1, Liangzhu (Leon) Wang2

1,2Deptartment of Building, Civil & Environmental Engineering

Concordia University, Montreal, Canada

ABSTRACT

Modeling of indoor airflows using

computational fluid dynamics (CFD)

techniques can be difficult and time

consuming, especially for complicated

problems or for big buildings. A fast and

accurate CFD solver can significantly shorten

the time of the analysis with acceptable

accuracy for engineering analysis. The aim of

this paper is developing a fast and accurate

CFD solver to simulate indoor airflow

problems at real time. To achieve this goal, we

use a combination of Eulerian and Lagrangian

algorithms, namely semi-Lagrangian method,

equipped with one well-known mathematical

method, multigrid solver, to increase the

convergence rate. In the present algorithm,

convection term is solved by semi-Lagrangian

algorithm and diffusion term and Poisson

equation are solved by an implicit and V-cycle

multigrid solver. The results show that we can

use large time steps without any instability

problem and consequently achieve better

convergence in comparison with standard

semi-Lagrangian algorithms and conventional

Eulerian methods. Additionally, we discussed

the stiffness of solving the Poisson equation

that was not found in the previous works of

semi-Lagrangian method.

INTRODUCTION

Modeling of indoor airflows using

computational fluid dynamics (CFD)

techniques can be difficult and time

consuming, especially for complicated

problems or for big buildings. A fast and

accurate CFD solver can significantly shorten

the time of the analysis with acceptable

accuracy for engineering analysis, in

particular, for building industry. For example,

building engineers can benefit from this solver

in the initial design stage to design a good and

optimized air conditioning and ventilation

system without lengthy and detailed

engineering analysis. Additionally, in the later

operating stage of a building, the fast solver

can play a crucial role in building operation

and controls, for example, when an

emergency, e.g. fire, happens in a building, the

solver may provide real-time control strategies

to help rescuers control the fire or manage

occupants’ evacuation in the building. Another

example of the emergency situations is the

spreading of polluted air in a building. With a

real-time and accurate solver, we will be able

to understand how the pollutant spreads in the

building at real time from the source, and

possibly predict future states of the spreading

so we can react before any damages on

occupants’ health may occur.

Conventional CFD solvers, such as those

based on Eulerian and Lagrangian methods,

often perform unsatisfactorily for big and

complicated indoor airflow problems. In the

Eulerian algorithms, we consider our fluid as a

continuum fluid. Then we define a fixed

computational domain, Eulerian mesh, within

our real domain. Finally, we consider all fluid

flow variables, including pressure, velocity,

density, etc., as fields, a function of space and

time, within the fixed computational domain,

and develop and solve the conservation

equations on a control volume basis. A fast

CFD solver often replies on explicit

algorithms, where there is one important

constraint, CFL (Courant-Friedrichs-Lewy)

condition, causing the time step to be small

enough to ensure numerical stability but

potentially slow down the simulation

significantly. In the Lagrangian algorithms, we

will consider our fluid in the flow as a large

number of individual particles. Then we follow

each particle’s path, characteristic curves, and

by this way, we will solve conservation of

equations. Although the CFL condition may

not be relevant in this algorithm, the

computational domain, the Lagrangian mesh,

is not fixed so new computational domain

needs to be generated at each time step, which

results in a more complicated and even slower

solution. More details about these two

approaches are presented through the

literatures (Shirolkar (1996), Loth (2000),

Lakehal (2002)).

During past decades, many researchers tried to

develop some other solvers to simulate indoor

environment such as zonal and multizone

models (Eriksson et al., 2002, Wang et al.,

2008). Many simplifications are considered to

achieve simpler and faster solvers than

Eulerian and Lagrangian methods. But their

major deficiency is the simulation accuracy is

case dependent and cannot be guaranteed for

all cases.

There are increasing amount of efforts finding

a fast and accurate approach known as

semiLagrangian approach, which is a

combination of both Eulerian and Lagrangian

methods. In fact, this method considers the

fluid as a large number of discrete particles,

then follows their path and finally transfers

them to the Eulerian mesh realized by an

interpolation scheme. Semi-Lagrangian

method is fundamentally explicit without the

CFL constraint so it is unconditionally stable,

allowing large time steps. Additionally it does

not need to regenerate computational domain

at each time step as the Lagrangian methods

do.

Among all these efforts, this paper reports a

fast CFD solver for solving indoor airflow

problems at real time based on the

semiLagrangian method (Courant et al., 1952,

Staniforth et al., 1991, Zuo et al., 2009, Jin et

al., 2015). Previous researchers (Zuo et al.,

2009, Jin et al., 2013, Jin et al., 2015)

developed a Fast Fluid Dynamics (FFD)

method based on the semi-Lagrangian method

to simulate indoor airflow problems. For

example, Jin et al. (2013) used this algorithm

to simulate natural ventilation around and

inside a single room, buoyancy driven inside a

single room, and also airflow inside a complex

room. In the previous works most effort was

spent to apply semi-Lagrangian method and

improve its accuracy. Based on our

knowledge, most of the computing time of a

FFD simulation is consumed when solving the

diffusion terms in the momentum equations

and Poisson equation. The accuracy problem

associated with mass imbalance of the FFD

method can also be caused by a poor linear

solver. Thus in this paper, we try to improve

the performance of the momentum and

Poisson equation solvers by using a

wellknown numerical method, multigrid

solver, to increase the convergence rate. This

paper reports the first effort of developing a

fast and accurate CFD solver: the combination

of semi-Lagrangian and multigrid methods

with a new in-house 3D CFD code using

C++programming language.

Here we solve convection and diffusion terms

in the Navier-Stokes (N-S) equations

separately. The convection term is solved by

first-order semi-Lagrangian algorithm and the

diffusion term is solved by an implicit

multigrid (MG) solver (Wesseling, 1995,

Briggs et al., 2000). Here we use V-cycle with

three different levels of computational girds in

the multigrid.

In the current project, our main concern was

the speed of our solver and we tried to speed

up the convergence rate. In the present study,

we observed that the huge amount of our

running time in each time step is consumed by

solving the Poisson equation. This problem

was not found and studied with details in the

previous studies (Staniforth et al., 1991, Zuo et

al., 2009, Jin et al., 2013, Jin et al., 2015).

METHODOLOGY

In this section, we explain the methodology for

solving the N-S incompressible flow.

Equations (1) and (2) shows the continuity and

the momentum equations.

 (1)

 (2)

where 𝑈𝑖, 𝑥𝑖, 𝑓𝑖 are velocity, space, and source

term vectors in i direction. 𝑡, 𝑥, 𝜌, 𝜇 are time,

space, density, and dynamic viscosity of the

fluid. The first term on the right hand side of

Eq. (2) is the advection (or convection) term.

The second term is the diffusion term followed

by the pressure gradient term.

To solve Eqs. (1) and (2), we used the

projection method based on the decomposition

theorem, namely the Helmholtz-Hodge

Decomposition. Chorin used this method to

solve incompressible N-S equations (Chorin

1967). In his algorithm, we have three step:

first, we calculate the intermediate velocity

field by solving Eq. (3).

 (3)

Then we apply the divergence free condition

for an incompressible flow field, the continuity

equation, to Eq. (3) and calculate a new

pressure field:

 (4)

Eq. (4) is a Poisson equation and this step is

called the projection step. The next final step

is the correction step, where we calculate a

new velocity field by using the new pressure

field as shown in Eq. (5).

 (5)

In the current work, we use a first-order time

splitting or fractional step method to solve Eq.

(3) by the following three-step procedure.

The procedure of solving incompressible N-S

equation in the present work is thus:

The first step of solving the diffusion and

source terms is approximately similar to the

projection term, for which we use geometric

multigrid method. For the advection step, we

use a first-order backward semi-Lagrangian

algorithm. In the following, we will explain the

details of the multigrid solver and

semiLagrangian used in the present work.

MULTIGRID

Multigrid method is a very powerful and useful

method to iteratively solve differential

equations. This method was developed to

accelerate the convergence rate of

conventional iterative methods, such as Jacobi

and Gauss-Seidel methods. The procedure of

this method is solving the equation on the

coarse grids to damp the low frequency errors

and increase the convergence rate.

In this paper we use V-cycle geometric

multigrid with three levels: fine grid, average,

and coarse girds as shown in Figure 1.

Multigrid method has three main steps (Briggs

et al., 2000):

1. Smoothing: solving the main equation

on the fine grid by using a few iterations of a

conventional iterative method, such as Jacobi

and Gauss-Seidel methods.

2. Restriction: solving the error equation

on the coarse grid by transferring the data from

fine to coarse grids.

3. Interpolation or prolongation:

transferring the calculated errors to fine girds

and modifying the data calculated from

smoothing step.

Figure 1. Interpolation and restriction in V-Cycle multigrid solver

For Eqs. (4) and (6), We can cast them in a

general matrix form after linearization:

 𝐴𝑈𝑖 = 𝑏𝑖 (9)

where 𝐴 is the coefficients’ matrix. Eq. (9) is

solved by two iterations of the Gauss-Seidel

method on the fine grid to find 𝑉𝑖, the

approximate of 𝑈𝑖. Then we calculate the

residual 𝑅𝑖:

 𝑅𝑖 = 𝑏𝑖 − 𝐴𝑉𝑖 (10)

We then write the error equation 𝑒𝑖 = 𝑈𝑖 − 𝑉𝑖:

 𝐴𝑒𝑖 = 𝑅𝑖 (11)

The next step is to transfer the solution of the

error equation from the fine grid to the average

grid, so-called the restriction step, by ten

Gauss-Seidel iterations on the fine grid. For

transferring, we used a first-order linear

interpolation scheme in all three mesh

directions. Then the whole procedure,

recalculating residual, reconstructing error

equation, and retransferring the error equation

from average grid to coarse grid, will be

repeated on the coarse grid. Then we go to the

final step, the interpolation step when we

transfer the results of the error equation from

the coarse grid to the average grid by the linear

interpolation. Here we solve the error equation

by two Gauss-Seidel iterations for smoothing

followed by the linear interpolation to transfer

the results of the error equation from the

average grid to the fine grid. Now the new

velocity values can be found from the

correction:

 𝑈𝑖 = 𝑒𝑖 + 𝑉𝑖. (12)

If the convergence criterion is satisfied, we go

to the next time step. Otherwise the whole

procedure is repeated.

SEMI-LAGRANGIAN

As mentioned before here we used the

firstorder semi-Lagrangian algorithm to solve

the advection term, Eq. (7), rewritten in a

Lagrangian form:

 𝐷𝑈𝑖 𝜕𝑈𝑖 𝜕𝑈𝑖 (13)

Now we solve the Lagrangian form or material

derivative with first-order accuracy:

 (14)

Based on the Lagrangian derivative, if we

consider the fluid inside the flow consists of a

lot of small particles, we can calculate the

particles’ velocity by tracing back the

particles’ path.

 (15)

Figure 2. Sketch of computing new velocity field by

semiLagrangian method.

Figure 2 shows that the calculation of the

velocity at 𝑥𝑜𝑙𝑑 needs an interpolation scheme.

Here we use a linear interpolation scheme and

calculate the velocity at 𝑥𝑜𝑙𝑑 by using the

values of the neighbor cells, a, b, c, and d in a

2-D setup as an example.

ERROR DEFFINITION

In the present work, two error definitions are

used. Solving the diffusion and projection

equations by multigrid solver, the error is the

residual calculated by Eq. (10). Here the error

for solving the diffusion terms is calculated by

the velocity terms on the fine grid and for the

projection equation is calculated by the

pressure variable on the fine grid.

In this solver we also defined another error to

show when the results achieve steady state

conditions. Here the error is defined by the

maximum difference between the value of the

velocity field at the current time step and the

previous time step. The convergence criterion

for both errors is 1×10-7.

SIMULATION

In this section first we will solve the

wellknown 3D lid-driven cavity flow problem

and compare our results with conventional

finite volume methods. The accuracy and time

step used in semi-Lagrangian and

conventional finite volume method will be

discussed including the discussion of the

convergence rate of the MG solver added to

the semiLagrangian solver. The computational

domain of the cavity flow is a cube (1 × 1 × 1

𝑚3) with 64,000 structured nodes (40 × 40 ×

40 for the three directions). The lid velocity at

the top is set to 1 m/s. All other surfaces are

fixed walls. Then, we will solve heat

conduction problem with the same

computational domain to investigate the

efficiency of our multigrid solver.

RESULTS

Figure 3 shows the velocity vectors on the

middle-section of the cube, x-y surface in the

Cartesian coordinate. In the previous study (Jin

et al. 2013), the researchers mentioned that the

semi-Lagrangian methods has some problems

to capture recirculation flows. From visual

inspection, the current solver is shown to be

able to capture the recirculation flow field

well.

Figure 3. Velocity vectors of the cavity flow

In Figure 4, we compare our results with the

conventional finite volume method (FVM) for

different time steps, 𝑑𝑡 = 0.001, 0.01, 0.1 s.

Note that with conventional FVM method, we

cannot use 𝑑𝑡 > 0.001 s because of the

stability problem as related to the CFL

condition. But thanks to the semi-Lagrangian

of the new solver, we can use larger time steps.

Figure 4. Comparison of velocity magnitude on the center line of the

computational domain in the cavity flow.

Figure 4 also shows that a large time step

decreases the simulation accuracy when using

the finite volume method (FVM) method as a

baseline for comparison. This problem has

been reported by the previous studies. The

accuracy can thus be improved by using small

time steps or higher order methods, e.g.

second-order semi-Lagrangian methods. We

can also improve the accuracy by using high

order interpolation schemes.

The advantage of using multigrid solver can be

shown by comparing to simple solvers such as

Gauss-Seidel. For the same convergence

criterion of 1×10-7, Table 1 shows that the MG

solver is about 5 times faster than the G-S

solver. To show the advantage of the MG

solver, we modify the cavity case by only

solving the diffusion term, the Laplace

equation so the problem becomes a purely heat

conduction problem.

 𝜕2𝑇 𝜕2𝑇 𝜕2𝑇 (16)

Figure 5 shows the results of the heat

conduction problem with the following

boundary conditions, (temperatures on the

different walls are defined as non-dimensional

values):

𝑇𝑡𝑜𝑝 𝑓𝑎𝑐𝑒 = 1.0, 𝑇𝑜𝑡ℎ𝑒𝑟𝑠 = 0.0

Figure 5. 3 dimensional heat conduction problem

Table 1. Comparison of execution time for simple GS solver and

multigrid solver.

 Multigrid (V-cycle) Simple (Guess-Seidel)

Cavity flow 26.09 [s] 129 [s]

Heat Conduction 1.68 [s] 11.98 [s]

For the heat conduction problem, the MG

solver is about 7 times faster than the GS

method.

The previous studies did not investigate and

report the significance of each term in the

conservation equations in terms of computing

time and accuracy. In the following, we try to

investigate which part of our equations is more

time consuming. Figure 6 shows the

convergence rate of solving the diffusion terms

of the momentum equations in three different

directions. For the criterion of 1×107, the

convergence is satisfied after ten iterations in

all directions. In comparison, Figure 7 shows

that the number of iterations for the Poisson is

about 350 for convergence. It means that most

of the computing time, due to the numerical

operations, is caused by solving the Poisson

equation not the diffusion equation. Here the

error is the residual calculated by Eq. (10).

Therefore, the computational speed can be

further improved by other advanced numerical

solvers for the Poisson equation, such as

adding successive over relaxation methods

(Saad 2003).

Figure 6. Error vs number of iterations when solving the diffusion

term in x, y and z directions.

Figure 7. Error vs number of iterations of solving the Poisson

equation.

CONCLUSION

In the applications of building engineering, we

often encounter big computing domains during

a CFD analysis, such as a building with many

rooms and many stories. A conventional CFD

solver is often not impractical to use in this

case, because it is too computationally

demanding. Meanwhile other methods such as

zonal and multizone models are not accurate

enough to capture all characteristic of the

flows. Semi-Lagrangian method is a fast

algorithm that can improve the speed of CFD

simulations. Additionally multigrid method is

one of the well-known fast numerical solvers

for iteratively solving differential equations. In

the current work we combined both of these

methods and increased the convergence rate of

the standard semi-Lagrangian method. The

results show convergence rate is improved.

It is also found that using large time steps can

affect the simulation accuracy negatively. For

better accuracy, we have two options: small

time step and the higher order algorithms. The

first choice seems not preferred because small

time steps slow down the solver so higher

order algorithms should be the solution for the

future work. From this study, we also found

that the Poisson equation is the major road

block for increasing the computational speed,

which can be achieved by adding advanced

solutions, such as successive over relaxations,

to the multigrid solver. In the future, for the

applications of using this solver for indoor

airflow problems, it is also necessary to add

turbulence models and probably using

advanced hardware, such as graphical

processing unit (GPU), to further accelerate

the CFD solver.

REFERENCES

Briggs W. L. and McCormick S. F. (2000), A

multigrid tutorial. Siam.

Chorin A. J. (1967), ‘The numerical solution of the

Navier-Stokes equations for an incompressible

fluid’, Bulletin of the American Mathematical

Society, 73(6) 928-931.

Courant R., Issacson E., and Rees M. (1952), ‘On the

solution of nonlinear hyperbolic differential

equations by finite differences’, Communications on

Pure and Applied Mathematics, 5(3) 243–255.

Eriksson J. and Wahlstrom A. (2002), ‘Use of

multizone air exchange simulation to evaluate a

hybrid ventilation system’, Transactions-American

Society of Heating Refrigerating and Airconditioning

Engineers, 108 811–817.

Jin M., Zuo W., and Chen Q. (2013), ‘Simulating

Natural Ventilation in and Around Buildings by Fast

Fluid Dynamics’, Numerical Heat Transfer, Part A:

Applications, 64(4) 273-289.

Jin M. and Chen Q. (2015), ‘Improvement of fast

fluid dynamics with a conservative semi-Lagrangian

scheme’, International Journal of Numerical

Methods for Heat & Fluid Flow, 25(1) 2-18.

Lakehal D. (2002), ‘On the modelling of multiphase

turbulent flows for environmental and hydrodynamic

applications’, International Journal of Multiphase

Flow, 28 823–863.

Loth E. (2000), ‘Numerical approaches for motion of

dispersed particles, droplets, and bubbles’, Progress

in Energy and Combustion Science, 26 161–223.

Saad Y. (2003), Iterative methods for sparse linear

systems, Siam, 2003.

Shirolkar J.S., Coimbra C.F.M. and McQuay M.Q.

(1996), ‘Fundamental aspects of modeling turbulent

particle dispersion in dilute flows’, Progress in

Energy and Combustion Science, 22 363–399.

Staniforth A. and Côté J. (1991), ‘Semi-Lagrangian

integration schemes for atmospheric models-a

review’, Monthly Weather Review, 119(9)

22062223.

Wang L. and Chen Q. (2008), ‘Evaluation of some

assumptions used in multizone airflow network

models’, Building and Environment, 43(10) 1671–

1677.

Wesseling P. (1995), Introduction To Multigrid

Methods, (No. ICASE-95-11). Institute for Computer

Applications in Science and Engineering

HAMPTON VA.

Zuo W. and Chen Q. (2009), ‘Real time or faster than

real time simulation of airflow in buildings’, Indoor

Air, 19(1) 33-44.

