Lessons From an Advanced Building Simulation Course

Godfried Augenbroe1, Jason Brown1, YeonSook Heo1,
Sean Hay Kim1, Zhengwei Li1, Scott McManus2, and Fei Zhao1

\textit{Georgia Institute of Technology}
1\textit{College of Architecture}
2\textit{College of Engineering}
Course on Tool Use

- User Interface
- Executable Calculation

Use of accepted tool, e.g. EnergyPlus, eQuest, et al.

Focus on application of the tool
Course on Tool Use

User Interface | Executable Calculation

Use of accepted tool, e.g. EnergyPlus, eQuest, et al.

Focus on application of the tool

Advanced Simulation Course

User Interface | Programming Language
Course on Tool Use

User Interface Executable Calculation

Use of accepted tool, e.g. EnergyPlus, eQuest, *et al.*

Focus on application of the tool

Advanced Simulation Course

User Interface Programming Language

Focus is on modeling skill through tool creation and application

\[T_i \rightarrow T_j \rightarrow T_k \rightarrow T_l \]
Use of accepted tool, e.g. EnergyPlus, eQuest, et al.

Focus on application of the tool

\[
\frac{1}{2} \left[(\rho c)_{ep} + (\rho c)_{eq} \right] \frac{\partial T_j}{\partial t} = -k_{ep} \frac{\partial T}{\partial x} \bigg|_{ep} - k_{eq} \frac{\partial T}{\partial x} \bigg|_{eq}
\]
Use of accepted tool, e.g. EnergyPlus, eQuest, *et al.*

Focus on application of the tool

Conduction Elements

Spatial discretization (equal elements):

\[
\rho C \frac{dT_i}{dt} = \frac{k}{\Delta x} T_i - 2 \frac{k}{\Delta x} T_j + \frac{k}{\Delta x} T_k
\]
Course on Tool Use

User Interface Executable Calculation

Use of accepted tool, e.g. EnergyPlus, eQuest, *et al.*

Focus on application of the tool

Advanced Simulation Course

User Interface Programming Language

Conduction and Convection Elements

\[
\frac{1}{2} \left[(\rho c)_{eq} \right] \frac{\partial T_i}{\partial t} = -k_{eq} \frac{\partial T}{\partial x} \bigg|_{eq} - h(T_k - T_i)
\]
Course on Tool Use

User Interface Executable Calculation

Use of accepted tool, e.g. EnergyPlus, eQuest, et al.

Focus on application of the tool

Advanced Simulation Course

User Interface Programming Language

Conduction and Convection Elements

\[
\frac{1}{2} \left[(\rho c)_{eq} \right] \frac{dT_i}{dt} = -k_{eq} \frac{\partial T_i}{\partial x} \bigg|_{eq} - h (T_k - T_i)
\]

Spatial discretization:

\[
\frac{1}{2} \left[(\rho c)_{eq} \right] \frac{dT_i}{dt} = \frac{k}{\Delta x} T_j - \frac{k}{\Delta x} T_k - h T_k + h T_i
\]
Course on Tool Use

User Interface Executable Calculation

Use of accepted tool, e.g. EnergyPlus, eQuest, et al.

Focus on application of the tool

Advanced Simulation Course

User Interface Programming Language

Spatially discretized node/element network assembled into a system of differential algebraic equations

\[
\begin{align*}
&M(t) \frac{d\bar{T}}{dt} + \left[S(\bar{T}, t) \right] \bar{T} = \bar{f}(t)
\end{align*}
\]
Course on Tool Use

Use of accepted tool, e.g. EnergyPlus, eQuest, et al.

Focus on application of the tool

Advanced Simulation Course

User Interface

Executable Calculation

User Interface

Programming Language

Spatially discretized node/element network assembled into a system of differential algegraic equations

\[
M(t) \frac{dT}{dt} + S(T, t) \overrightarrow{T} \overrightarrow{T} = \overrightarrow{f}(t)
\]

Implementation is checked against problems with analytical solutions
Common Base Case
Common Base Case
Common Base Case

\[M(t) \rightarrow T \] \[+ \] \[S(\rightarrow T, t) \rightarrow T = \rightarrow f(t) \]

Conduction Elements
Common Base Case

\[M(t) \xrightarrow{d} T + S(\vec{T}, t) \xrightarrow{d} T = -f(t) \]

Conduction Elements
Interior Convection Elements
Common Base Case

\[M(t) \rightarrow T \quad \text{d} - \rightarrow T \quad \text{d}t + \left[S(\rightarrow T, t) \rightarrow T \right] = -\rightarrow f(t) \]

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Common Base Case

\[M(t) \xrightarrow{d} T + S(\rightarrow T, t) \xrightarrow{\rightarrow} T = \rightarrow f(t) \]

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Solar (direct & diffuse)
Common Base Case

\[M(t) \stackrel{d}{\rightarrow} T + S(\rightarrow T, t) \stackrel{\rightarrow}{=} f(t) \]

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Solar (direct & diffuse)
Longwave Radiation Elements
Common Base Case

\[
\frac{d}{dt} T + S \rightarrow T = f(t)
\]

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Solar (direct & diffuse)
Longwave Radiation Elements
Common Base Case

\[M(t) \rightarrow T \quad dT/dt + S(T, t) \rightarrow T = -f(t) \]

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Solar (direct & diffuse)
Conv. + Rad. \(\Rightarrow \) Room Element
Common Base Case

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Solar (direct & diffuse)
Conv. + Rad. ⇒ Room Element
Ventilation Elements
Common Base Case

\[M(t) \rightarrow T \, dt + S(\rightarrow T, t) \rightarrow T = f(t) \]

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Solar (direct & diffuse)
Conv. + Rad. \(\Rightarrow \) Room Element
Ventilation Elements
Internal Mass (e.g. Furniture)
Common Base Case

Conduction Elements
Interior Convection Elements
Exterior Convection Elements
Solar (direct & diffuse)
Conv. + Rad. ⇒ Room Element
Ventilation Elements
Internal Mass (e.g. Furniture)

All rolled into:

\[
\left[M(t) \right] \frac{dT}{dt} + \left[S(\vec{T}, t) \right] \vec{T} = \vec{f}(t)
\]
1. Predictive optimal controller for external shading

\[M(t) \rightarrow T dt + S(T, t) \rightarrow T = f(t) \]

\[\text{cost} = \int_{24}^{12} (|\ddot{Q}_{htg}| + \epsilon |\dddot{Q}_{cool}|) dt \]

\[f_{min} \text{cost}, ... \]
1. Predictive optimal controller for external shading

\[
[M(t)] \frac{d\overrightarrow{T}}{dt} + [S(\overrightarrow{T}, t)] \overrightarrow{T} = \overrightarrow{f}(t)
\]

\[
cost = \int_{12}^{24} \left(|\dot{Q}_{htg}| + \epsilon |\dot{Q}_{cool}| \right) dt
\]

\[
fmincon(cost, ...)
\]
1. Predictive optimal controller for external shading

15 March, Atlanta GA

\(T_{roomair} = 24^\circ C \)
2. Uncertainty analysis of monthly cooling loads

\[M(t) \text{d}t \rightarrow T + S(\rightarrow T, t) \rightarrow T = \rightarrow f(t) \]
2. Uncertainty analysis of monthly cooling loads

Stochastic Variables:

Ventilation volume flow rate
\[\dot{V} = \dot{V}_{\text{base}} + \dot{V}_{\text{scale}} \cdot \text{windspeed} \]
\[\dot{V}_{\text{base}} \in [10 \frac{m^3}{h}, 20 \frac{m^3}{h}] \]
\[\dot{V}_{\text{scale}} \in [5 \frac{m^2}{s} h, 7 \frac{m^2}{s} h] \]

Solar gain thru 2-pane window
\[Gain_{\text{solar}} = 1 - \rho_{\text{outer}} - \alpha_{\text{outer}} - \alpha_{\text{inner}} \]
\[\rho_{\text{outer}} \in [0.1, 0.2] \]
\[\alpha_{\text{outer}} \in [0.1, 0.3] \]

Internal Mass
\[c_{\text{room}} = M_f \cdot V_{\text{room}} \cdot c_{\text{air}} \]
\[M_f \in [2 \frac{kg}{m^3}, 5 \frac{kg}{m^3}] \]

Monte Carlo, sampling stochastic variables from uniform distributions
2. Uncertainty analysis of monthly cooling loads

July Cooling Load, Atlanta GA
\[T_{roomair} \leq 24^\circ C \]
3. Inverse problem: infiltration rate estimation

“Measured” data created by simulating with infiltration rate given by
\[\dot{V} = a + b(windspeed) \] with \(a = 30 \), \(b = 20 \)

Estimates of \(a \) and \(b \) calculated by minimizing
\[\int_0^{\text{end}} (T_{\text{measured}} - T(a, b))^2 \, dt \]

Result: \(a = 32.3, b = 23.9 \)
4. Optimal design of radiator valve settings

Blue: interior temperature; green: exterior temperature
5. Thermal comfort as a function of location

PMV for 8am, 22 December in Atlanta
Course on Tool Use

User Interface Executable Calculation

Use of accepted and validated tool

Advanced Simulation Course

User Interface Programming Language

Development of a 'laboratory' tool
Course on Tool Use

- **User Interface**
- **Executable Calculation**

Use of accepted and validated tool

Focus on use of a real-world tool and analyzing results

Advanced Simulation Course

- **User Interface**
- **Programming Language**

Development of a 'laboratory' tool

Focus on development of modeling skill via learning where results come from
Course on Tool Use

- **User Interface**
- **Executable Calculation**

 - Use of accepted and validated tool
 - Focus on use of a real-world tool and analyzing results
 - Simulation core off-limits

Advanced Simulation Course

- **User Interface**
- **Programming Language**

 - Development of a 'laboratory' tool
 - Focus on development of modeling skill via learning where results come from
 - Nothing is off-limits
Course on Tool Use

- User Interface
- Executable Calculation

Use of accepted and validated tool

Focus on use of a real-world tool and analyzing results

Complimentary approaches ⇒ better modelers

Advanced Simulation Course

- User Interface
- Programming Language

Development of a 'laboratory' tool

Focus on development of modeling skill via learning where results come from

Nothing is off-limits