Innovative Approach in Acoustic Simulation of Timber Walls

Marco Caniato1, Paolo Bonfiglio2, Federica Bettarello3, Andrea Gasparella1
1Free University of Bozen, Faculty of Science and Technology, Bozen, Italy
2Materiacusta srl, Ferrara, Italy
3University of Trieste, Engineering and Architecture Department, Trieste, Italy

Abstract

The acoustic insulation performance of a glulam system (timber-framed wall) is of paramount importance in sustainable lightweight constructions. Nevertheless, traditional models like impedance coupling or double-leaf theory cannot offer robust results comparable to measurements. Even Finite Element (FE) simulations may not provide good results, due to high variables computations models and the resultant error propagation.

For these reasons, in this paper the Transfer Matrix Modelling (TMM) method has been adopted for the acoustic analysis of glulam timber structures in order to understand its advantages and limitations. The sound insulation of glulam walls will be simulated using a decoupled approach where beams will be considered as linear sound bridges.

Introduction

In recent years, the number of wooden constructions has been growing, thanks to a change in the awareness of designers, builders and end users. Timber buildings can be cost effective, store CO\textsubscript{2} and are based on a sustainable, renewable and non-polluting material, neither for production nor for final disposal.

It was recently demonstrated by Ramage et al. (2017) that wood for construction is one of the many forest products around the world.

However, such constructions are not and cannot be approached in the same way as traditional heavy bricks or concrete because (i) the construction technologies are profoundly different, (ii) the design follows different lines of thought and (iii) the attainable performances can be different, especially in the acoustic domain. For example, the results of the COST action FP90702 (2012) led to the conclusion that timber frame constructions provide better acoustic insulation in mid- and high-frequency but worse in low-frequency than traditional heavy constructions.

In this perspective, also the design and performance forecasting tools of these constructions must evolve and adapt to the wooden constructions and their particularities.

Moreover, nowadays there is need for increasingly accurate and detailed forecasts of the behavior of individual components and to be able to optimize the composition directly within the same analysis tool, without having to run multiple tools and combine results together.

Available methodologies for acoustic simulation of transmission loss are the following:

1. Empirical or semi-empirical models
2. Statistical Energy Analisys (SEA)
3. Finite Element Method (FEM) or Analisys (FEA)
4. Progressive impedance method
5. Transfer Matrix Method.

The first ones are very related to single compositions and could not include variations (Mak and Wang, 2015). For example equations are available for dedicated cases such as double-leaf masonry partitions valid for 80 ≤ m’ ≤ 400 [kg/m2] and for a maximum air gap thickness of 5 cm or plasterboard with an upper limit of m’ ≤ 150 [kg/m2], etc.

Moreover, the majority of these models do not provide frequency information but just indexes, and this prevents to know if there will be noise caused by timber structures.

For the second and third ones, recent works managed to solve the problem using SEA (Kouyoumji, 2013; Kouyoumji and Guigo, 2015; Wang and Rajaram, Kouyoumji, 2015), FEM analysis (Mahn and al., 2014), or FEA analysis (Henning et al., 2013) models trying to cover other possibilities. However, these methodologies are always related to single specific configurations or to specific frequencies and cannot be generalized to other configurations.

The progressive impedance theory (Fringuellino and Guglielmone, 2000) generalizes the problem, starting from the materials properties and including the 2D wave propagation, considering constant and homogeneous the material properties for single layer. This method defines the surface acoustic impedance parameter defined as follows:

\[
z_1 = \frac{Zc}{\left(-ik_1 \cot(k_1)-iz_2 \right)\left(z_2+iz_1 \cot(k_1) \right)}
\]

(1)

where \(z_1\) and \(z_2\) are the surface impedances at respectively \(x = 0\) and \(x = l\) of a layer (Figure 1), \(Z_c\) is the complex impedance for dissipating materials and \(k_1\) is the complex wave number.
If this model is applied to multi-layered systems (Figure 2), equation (1) is used for each individual interface and generalized in the following equation:

\[z_i = Z_c \frac{-iz_{i-1} \cot(k_i l_i) + z_{i-1}}{z_{i-1} - iz_{i-1} \cot(k_i l_i)} \]

(2)

where \(l_i \) are the thickness of every element constituting the composition.

\[Z_i^c - k_i^c \quad Z_i^{c-1} - k_i^{c-1} \quad Z_i^{c-n} - k_i^{c-n} \]

This method is widely utilized for systems involving porous or fibrous materials and in general for composite systems, used in the field of sound absorption. However, when the method is applied to transmission loss, the results are not always reliable because they tend to underestimate or overestimate the impedance for continuous materials such as wood, metals, etc.; Furthermore, it fails to take into account any resonances of the system (Mak and Wang, 2015) or rigid or viscoelastic connections present on the surface \(S_1 \), while the vector \(V(S_2) \) contains the same descriptors for the surface \(S_2 \). Elements of matrix \(T \) depend on physical and mechanical parameters relative to each specific layer.

In other words, the transfer matrix \([T] \) describes the full transmission of sound waves through the layered structure. The size of this matrix depends on the nature of each layer, such as solid, fluid, poroelastic or viscoelastic. The materials within the various coupled layers are assumed to be semi-infinite in the lateral parts, but in this way there could be significant differences between the measured values and those simulated, especially at low frequency. This has been avoided by using the window with finite limitations (Bonfiglio et al., 2016, Santoni et al., 2017).

Assuming that the layered structure is enveloped in a semi-infinite fluid on both sides, it is possible to describe the relationship between the complex transmission \(T \) and the reflection coefficient \(R \) as:

\[T = -(1 + R) \frac{\det([D_{n+1}])}{\det([D_1])} \]

(4)

being \([D_{n+1}] \) and \(D_1 \) matrices obtained from a complete matrix \(D \) (combination of transfer matrix of each layer, coupling matrices and proper boundary conditions) once columns \(n+1 \) and 1 have been deleted.

The complex reflection coefficient is defined as follows:

\[R = \frac{Z_0 \cos \theta - Z_0}{Z_0 \cos \theta + Z_0} \]

(5)

where \(Z_0 = \rho_0 c_0 \) represents the characteristic impedance of the fluid. This is a function of density \(\rho_0 \) and speed of sound \(c_0 \).

\(Z_s \) represents instead the surface impedance of a layer of the package considered and can be calculated as follows:

\[Z_s = -\frac{\det([D_1])}{\det([D_2])} \]

(6)
This research aims to test and validate numerical simulations by using the Transfer Matrix Model (TMM) applied to wooden walls with frame technology, resulting in the apparent sound insulation index R (Transmission Loss TL) in frequency. The limits of this method are then investigated both as regards frequency and complexity of composition.

Motivation of the study

Acoustic simulations for the determination of parameters such as apparent sound insulation are traditionally based either on simple mathematical models such as progressive impedance, or on predictive formulas derived from physical or empirical models (Mak and Wang, 2015). These formulas are derived from the experience of laboratory or in situ measurements of many partitions.

Traditional finite element (FEM or FEA) or statistical (SEA) simulation techniques are rarely used in the field of sound insulation, because the complexity of the structures involved and the diversity of materials, combined with the presence of multiphysical phenomena such as fluid dynamics coupled with the mechanics, actually frustrate the possibility of using these methods (Yu et al. 2018). In fact, if results have to be reliable, the computational times, given the presence of many nodes and the consequent propagation of the error, are unacceptable. Moreover, they are typically obtainable only from low to medium frequencies.

At higher ranges, with the increase of available energy and therefore of the stimulus for each node, the current models are not able to respond accurately.

Moreover, such methods do not allow an easy and fast improvement and optimization of the composition of the building component. They rather require redrawing it completely or in part, starting again the simulation from the initial stage. This means to recreate all the degrees of freedom, regenerate and refine the mesh and apply all the loads again. These procedures are time consuming and imply lots of computational time. For these reasons, more effective alternative methods such as TMM need to be studied and validated. This method has the advantage of not having to completely redesign the geometry of the sample and of being able to include dedicated analytical methods focused on specific cases (Munjal, 1993; Allard and Atalla, 2009). Based on TMM scheme (Figure 3), it is clear that if it is needed to add another layer or to modify an existing one, it could be simply implement the associated matrix on the correct step of the model.

This approach has already been applied to metal frame-structures and also to plasterboard double leaves walls and massive partitions (Sharp, 1978, Vigran, 2010).

Traditional methods like progressive impedances cannot take into account effectively solid junctions as example or cannot easily model differences for porous or poroelastic materials.

TMM was successfully used for multi-layered infinite plate (Munjal, 1993), finite stiffened and orthotropic structures lined by porous materials in a multi-layered configuration (Ghinet and Atalla, 2001), double fiberboard partitions and sandwich structures (Dijckmansa and Vermeir, 2010; Piana et al., 2014) sound absorption forecasting (Verdière et al., 2013), ETHICS influence on masonry wall (Santoni et al. 2017), but no application to glulam partitions is currently available.

Some recent studies (Santoni et al., 2017b; Santoni et al., 2018) dealt with the TMM simulation of cross-laminated timber walls.

There is therefore a need to understand whether TMM is able to provide reliable results for prefabricated wooden partitions with respect to the apparent sound insulation index that these structures can offer. The simulated results were then compared to laboratory measured ones.

In addition, the ease of implementation of the model in the case of TMM allows a parametric analysis of the individual components and the evaluation of different layer combinations even much more complex.

Materials and methods

In this work, a numerical model is applied for the determination of the influence of materials on the propagation of the acoustic wave.

Investigated structure

In order to understand if the method described above can be applied to stratified wooden partitions with inner frame structure, we have proceeded to identify a traditional partition related to this type of construction and consisting of the following (Figure 5) elements:

- OSB panel, thickness 2.2 cm
- Wooden beams 16 cm thick and 8 cm wide
- Filling in mineral wool 16 cm thick and density 40 kg/m³
- OSB panel, thickness 1.4 cm

![Figure 4: Sound wave p impacting on a multi-layered structure](image)
In order to obtain an experimental result, this partition was tested in laboratory according to the series of standards ISO 10140:2010. This procedure was useful to study the frequency behavior of partition transmission loss, to understand the robustness and reliability of the model and to validate the numerical simulation and the assumptions related to it. The real timber frame partition was mounted in laboratory (coupled chambers) and an airborne omnidirectional noise source was used to excite the sample.

In order to investigate which model could be more suitable to be adapted to the different partition components, various simulation steps were taken:

(i) only the single OSB panel is considered, in order to investigate its frequency behavior both as isotropic and orthotropic panel;
(ii) once defined the elastic properties of the external shells (OSB), the partition is modelled as if the rigid connections between the two external panels were not present;
(iii) the structural connections are inserted.

In all the previous phases, the OSB panels are considered elastic solids.

In (iv), the OSB panels are considered as viscoelastic materials (Figure 3).

OSB mechanical properties are reported in Table 1.

Mineral fiber was modelled as poroelastic medium using Johnson- Champoux-Allard (JCA) model (Allard and Atalla, 2009). This model requires the knowledge of five physical and geometrical parameters (namely, airflow resistivity, open porosity, tortuosity and viscous and thermal characteristic lengths). According to this model, the porous material can be replaced on a macroscopic scale by an equivalent fluid of effective density ρ and effective bulk modulus K. The motionless frame condition can occur either because of high density or elasticity modulus, or because of particular test conditions (i.e. material placed on a rigid wall). The viscous effects and thermal exchanges can be treated separately. In Table 2 the used parameters and related values for the JCA model are reported for a rock wool (density 40 kg/m3).

![Figure 5: Studied structure.](image)

$\text{Young’s Modulus [Pa]}$ as a function of $\text{frequency for the OSB panel.}$

<table>
<thead>
<tr>
<th>Material</th>
<th>E_1 [GPa]</th>
<th>E_2 [GPa]</th>
<th>G [GPa]</th>
<th>ν</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSB isotropic</td>
<td>3.8</td>
<td>--</td>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>OSB orthotropic</td>
<td>3.8</td>
<td>3</td>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>OSB</td>
<td>Depends on frequency</td>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Used parameter for OSB layer ($\rho = 700$ kg/m3).

![Figure 6: Elastic modulus E [Pa] as a function of frequency for the OSB panel.](image)

<table>
<thead>
<tr>
<th>Material</th>
<th>σ</th>
<th>ϕ</th>
<th>α</th>
<th>Λ</th>
<th>$\Lambda’$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock wool</td>
<td>15400</td>
<td>0.98</td>
<td>1.04</td>
<td>56e-6</td>
<td>11e-6</td>
</tr>
</tbody>
</table>

Table 2: Used parameter for poroelastic material, obtained by inversion from a Kundt tube measurement.

where ρ is the density [kg/m3], σ is the airflow resistivity [Ns/m3], ϕ is the open porosity, α is the tortuosity, Λ is the viscous length [m] and $\Lambda’$ is the thermal length [m].

Having the input parameters needed for the fluid phases, a JCA study was implemented in order to estimate the sound-proofing power R as a function of frequency.

The model used for the study is instead that of the linear connection with very high rigidity, because of the limited connection size compared to the length, with a distance between the linear connections in vertical of 60 cm and an internal damping η equal to 0.1.

Results

The apparent soundproofing test carried out in the laboratory is used as a basis for the validation of the model used. The frequency trend is shown in Figure 7, highlighting the typical resonance and coincidence zones for this type of partition.
In this work, a numerical simulation procedure was presented using transfer matrices and adapting the model itself to a composite partition made up of wood and mineral fiber, with the presence of an internal frame. The aim of the research is to understand the limits of the method and its possible implementations for numerical simulation in the field of wooden frame structures.

The results presented show how the method can provide reliable and robust results.

Discussion

In this work, a numerical simulation procedure was presented using transfer matrices and adapting the model itself to a composite partition made up of wood and mineral fiber, with the presence of an internal frame. The aim of the research is to understand the limits of the method and its possible implementations for numerical simulation in the field of wooden frame structures.

The results presented show how the method can provide reliable and robust results.
In order to understand how this method is more reliable for this type of application than traditional ones, (progressive impedances), in Figure 11 the comparison between progressive impedance obtained using one of the state-of-the-art commercial software for building acoustics and TMM is reported, highlighting the big difference in frequency trend result. Furthermore, as demonstrated by equation (2), in progressive impedance method it is not possible to investigate the sound propagation influence while for TMM (Figure 3, equations (3)-(6). Figure 9) it is possible to investigate also the influence of the propagation path as part of a parameter study.

However, when rigid structural connections are added across the entire partition thickness, the performance drops by up to 60 dB due to solid propagation. In this case, neither the mass of the connection nor its stiffness is very important; in this case, in fact, it has been set with a very high value, as the wooden beams are very thin compared to their length; furthermore, they present in reality a high transverse elastic modulus and a consequent excellent transmission of the sound wave. (Bucur et al., 2002; Beall, 2002; Bucur, 2006).

For this reason, associating a viscoelastic behavior to the two OSB panels, it is possible to obtain a frequency behavior similar to the measured ones.

In addition, the study was able to show how, without predefined databases, the transmission loss of complex wooden structures can be calculated with good reliability. The use of the TMM method has shown to be the possibility to study the partition parametrically, in good agreement with past research (Brunskog and Hammer, 2003a; Brunskog and Hammer, 2003b, Fortini et al., 2019); it may therefore provide a very powerful tool for deepening and characterization of the acoustic performance of this type of partitions.

Moreover, as already highlighted by many research projects such as Kouyoumji (2015) or Brunskog and Hammer (2000), the importance of having an instrument that, after appropriate calibrations, can provide the most precise forecast of the acoustic performance of complex walls, presents itself as a strong possibility for the research, design, implementation and construction of increasingly complex and performing wooden structures. The limits of this method lie exclusively in the deep knowledge of the physical mechanisms that govern the propagation of the acoustic wave in the different materials and couplings between them, as well as the possibility of measuring or finding in the literature reliable data relating to the mechanical and acoustic characteristics inherent in the materials. In fact, it has been demonstrated that the model variation of the OSB panel alone involves or does not involve obtaining a final result in accordance with the experimental one.

Conclusion

A prediction model, developed to investigate the transmission loss provided by timber frame partitions, has been presented. All the factors necessary for numerical simulation have been described and their parametric influence has been discussed and argued.

The results provided by the model based on transfer matrices (TMM) were then validated by a laboratory measurement of the partition itself, finding an excellent agreement between two frequency trends. It has been demonstrated that the method presents the best frequency results, also compared to progressive impedances ones, and that it could provide parametrical investigations on every step of the analysis highlighting paramount effects:

1. isotropic behaviour of external panel and its consequence on coincidence,
viscoelastic influence of OSB panels at middle-high frequencies,
3. predominant sound wave path transmission through solid junctions.

In the future, new simulations will be carried out by adding different layers to the test partition used in this research work, focusing on ETICS rather than additional internal layers, to understand how far this innovative way of simulating the transmission loss of a framed wooden partition can be taken.

Acknowledgement
This work was financed by EFRE 2014-2010 1095 E21@NOI CUP D56C18000180009 and by “Klimahouse and energy production” in the framework of the programmatic-financial agreement with the Autonomous Province of Bozen-Bolzano of Research Capacity Building, which are gratefully acknowledged.

Authors’ Contributions
Marco Caniato and Federica Bettarello developed the research. Marco Caniato defined the methods and comparisons. Marco Caniato and Paolo Bonfiglio performed the numerical simulations and the experimental measures. Marco Caniato and Federica Bettarello described potential future developments. Andrea Gasparella overviewed and supervised the research. Marco Caniato wrote the paper.

References
Beall, FC. (2002). Overview of the use of ultrasonic technologies in research on wood properties. ood Science and Technologies, 36, pp. 197–212

