
Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1381
https://doi.org/10.26868/25222708.2017.351

MPCPy: An Open-Source Software Platform for Model Predictive Control in Buildings

David H. Blum1 and Michael Wetter1

1Lawrence Berkeley National Laboratory,

Energy Technologies Area

Building Technology and Urban Systems Division

Berkeley, CA, U.S.A.

Abstract

Within the last decade, needs for building control
systems that reduce cost, energy, or peak demand, and
that facilitate building-grid integration, district-energy
system optimization, and occupant interaction, while
maintaining thermal comfort and indoor air quality, have
come about. Current PID and schedule-based control
systems are not capable of fulfilling these needs, while
Model Predictive Control (MPC) could. Despite the
critical role MPC-enabled buildings can play in future
energy infrastructures, widespread adoption of MPC
within the building industry has yet to occur. To address
barriers associated with system setup and configuration,
this paper introduces an open-source software platform
that emphasizes use of self-tuning adaptive models,
usability by non-experts of MPC, and a flexible
architecture that enables application across projects.

Introduction

Background

In an effort to limit climate change and decrease
operating costs, energy systems have become the focus
of widespread concern. This is especially true with
those systems associated with buildings, which account
for approximately 71% (EIA 2016a) of electricity use
and 40% (EIA 2016b) of total primary energy use in the
U.S. While buildings play the largest role in energy use,
they are largely ill-equipped to handle new performance
requirements brought about by new concerns. These
requirements include energy or carbon minimization,
peak demand minimization, integration with electrical
and thermal district energy system operations, and
occupant and operator feedback and connectivity. Many
of these requirements depend upon a building being able
to consider time-based incentives in the operation of
multiple subsystems towards a common objective.
Examples include shifting peak afternoon cooling loads
towards morning hours, reducing energy use during
times of high energy prices, coordinating PV generation,
electric vehicle charging, and occupant service to limit
the stress on the electric grid, and responsiveness to
occupants.

Advancing the State of the Art

Current state of the art building control systems rely on a
combination of PID feedback control and schedule-

based setpoint managing without consideration of all of
the necessary information to decide an optimal
performance trajectory for a given objective. This
includes forecasts of weather, energy prices, and
building occupancy. In addition, the current control
systems do not provide meaningful feedback to operators
about the impact of certain control actions on system
performance, which may help operators better manage
systems according to their objectives.

Conversely, model predictive control (MPC) can meet
the emerging requirements of building control systems.
MPC uses system performance models, which include
all of the relevant information, to forecast performance
and optimize control inputs with respect to a given
objective. These models can also provide useful
feedback to system operators or building occupants for a
number of operating scenarios.

A large body of work has shown that MPC can help
enable buildings to meet these new requirements
(Rockett and Hathway 2016). However, despite its
widespread adoption in other industries (Qin and
Badgwell, 2003) and success in research, it has not been
widely adopted in the building industry, except for a few
companies offering MPC as a software service for
commercial buildings (BuildingIQ 2016, QCoefficient
2016) and campus central plants (Johnson Controls
2015). Rockett and Hathway (2016) point out several
factors that contribute to the lack of penetration of MPC
into industry, with the foremost being 1) the lack of
long-term trials showing the effectiveness of MPC and
2) the expense and skill required for installation and
maintenance. This is particularly true for initial model
configuration and maintaining model accuracy as
building operation changes over time. We believe these
factors go hand-in-hand, where the high costs of
installation and maintenance have prevented numerous
long-term trials, and the low number of long-term trials
have prevented the development of robust modeling and
installation approaches.

Paper Objective

In order to address the problem of high system setup and
maintenance costs, increase the number of trials of MPC
in buildings, and facilitate widespread adoption of MPC
in the building industry, this paper introduces the
development of an open-source software platform for

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1382

MPC in buildings, MPCPy, available on the LBNL
Simulation Research Group github site at
https://github.com/lbl-srg/MPCPy under a modified BSD
license. A number of specific features are expected to
contribute to the solution:

 An emphasis is put on the use of adaptive models,
which use measurements of the building
performance to continually update and remain
accurate enough for control optimization, as
illustrated in Figure 1. Such models are expected to
drastically reduce model setup and maintenance
costs.

 Automatic model parameter estimation and
optimization problem formulation together with
flexible data input modules reduce the required
MPC and programming expertise of users.

 The use of open software standards enable
contributions from other researchers and adoption
by industry, while maintaining code maintenability
and longevity due to the use of standards that have
support in many industrial sectors.

 An extensible architecture enables rapid
development and distribution of new MPC methods.

Figure 1 – MPCPy emphasizes the use of self-

adapting models for MPC optimization.

While previous research has developed software
frameworks for MPC in buildings, most have been
developed for specific project requirements (such as data
sources, processing methods, building simulation
packages, and optimziation solvers) and are not made
available for public use. Those that are offered to the
public in some way require costly commercial software,
such as MATLAB (Zakula et al. 2014, Bernal et al.
2012, Sturzenegger et al. 2014), or are focused on one
aspect of the MPC process, such as reduced-order model
development (Sturzenegger et al. 2014, DeConinck et al.
2016). In contrast, the framework introduced here looks

to address all aspects for building MPC in an externsible
way, is freely available, and is provided open-source.

The remainder of the paper will describe the architecture
of MPCPy and present examples to showcase its
capabilities. This paper will not address open research
questions about proper adaptive model configurations
and learning procedures, nor will it address guidelines
for connecting to building automation systems (BAS).
However, it is expected that MPCPy could be used
extensively to answer these and other questions.

Architecture
MPCPy is designed using an object-oriented approach
that promotes extensibility and is scripted in Python 2.7.
The architecture is adapted from a tool-based
architecture approach for computer-aided control design
software (Barker et al. 1993 and Jobling et al. 1994), and
is shown in Figure 2. In such an architecture, tools are
developed to perform very specific functions, and then
are supported by common processing agents and
combined to perform various tasks. In MPCPy, four
class modules represent the tools needed for MPC:

 ExoData classes collect external data and process it
for use within MPCPy.

 System classes represent real or emulated systems
to be controlled, collecting measurements from or
providing control inputs to the systems.

 Models classes represent system models for MPC,
managing model simulation, estimation, and
validation.

 Optimization classes formulate and solve the MPC
optimization problems using Models objects.

Supporting the four tools are three modules for data
handling and processing during run-time:

 Variable and Unit classes together maintain the
association of static or timeseries data with units.

 Utility classes provide functionality needed across
tools and for interactions with external components.

MPCPy does not contain any of its own model
specifications or solvers. Instead, it relies on external
software, modeling languages, and solvers. While
dependencies can be expanded to include other software,
these external components are currently based on the
Modelica (Mattsson and Elmqvist 1997) and Functional
Mock-up Interface (FMI 2016) open standards, with
system emulation models and MPC models able to be
defined as native Modelica files or as Functional Mock-
up Units (FMU). An FMU is a zipped file containing
the variables and equations of a model that can be used
to exchange the model between simulation programs.
Optionally, solvers and additional data can be packaged
as well. Substantial development of the application of

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1383

Figure 2 – MPCPy architecture.

these standards to building simulation and optimization
is ongoing (Wetter et al. 2015 and Wetter and Treeck
2015). JModelica (Modelon AB 2009), an open-source
Modelica compiler, is used to compile native Modelica
models, simulate FMUs, and solve optimization
problems, while EstimationPy (Bonvini et al. 2014) can
be used for model parameter and state estimation using
FMUs. Therefore, any Modelica library can be used to
create native Modelica models, including the Modelica
Buildings Library (Wetter et al. 2014) or any from the
Annex 60 collaboration (Wetter et al. 2015), as can any
modeling software capable of generating FMUs. While
there exist methods to solve control optimization
problems using highly detailed, non-differentiable
models (Wetter 2001), we strongly recommend the use
of differentiable models for control optimization, which
can be solved very efficiently (Wetter et al. 2016).

The following sections will detail the features of the
Variables, Units, ExoData, Systems, Models, and
Optimization module classes.

Variables and Units

Variable and Units classes allow MPCPy to effectively
associate data with units as well as handle timeseries
data separately from static (constant) data. The Python
package Pandas (McKinney 2010) is integrated into the
handling of timeseries variables, bringing to MPCPy the
many useful features Pandas has to offer for data
storage, cleaning, resampling, interpolation, and
statistical analysis.

Figure 3 presents a basic Unified Modeling Language
(UML) class diagram, commonly used in the field of
software development, showing the relationship of
Variables and Units classes. The Variable class defines
common methods for MPCPy variables, while the Static
and Timeseries classes inherit the Variable class and
implement methods more specific to data that is constant
and time-varying respectively. Units are added to

variable objects upon instantiation and act upon the
variable data depending on the action. Each unit is part
of a quantity type. For example the unit degC is a
temperature quantity. Each quantity has a base unit in
which all data is stored, which follows the convention
defined by the Modelica Standard Library (Modelica
Association 2016). The display unit, however, defines
the conversion of the data to that base unit upon input, or
conversion from that base unit upon display or output.
The DisplayUnit class defines these required methods,
with additional methods specified in quantity-specific
classes.

Figure 3 – Variables and Units class diagram. Classes

labelled “A” are abstract, “C” are concrete.

ExoData

ExoData classes are responsible for the representation of
exogenous data, with methods to collect this data from
various sources and process it for use within MPCPy.
Exogenous data is separated according to a data class
and each data class has a specified variable organization
in the form of a Python dictionary. This allows for an
internal understanding of where objects should look for
specific data and the use of specific checks for each data
class. At the time of this writing, there are eight types of
data classes: Weather, Internal, Controls, Constraints,
Prices, Parameters, and Other Inputs.

Figure 4 presents a basic UML class diagram showing
the relationship of ExoData classes. At the top is the
Type class that contains common methods for all
exogenous data class types. Then, there exists an
abstract class for each exogenous data class, which
inherits the Type class and adds additional methods
specific for that data class. These include assertions that
particular variables fall within limits or methods for
manipulating the data dictionary for that data class.
Finally, source-specific classes inherit the type-specific
data classes and add methods required to collect data
from a particular source. For example, an EPW file or
CSV file may be the source of weather data. At the time
of this writing, aside from this choice, CSV files must be
the source of all other data types. However, similar to
the EPW and CSV example, the class designs allow for
easy addition of other data class sources and types.

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1384

Figure 4 – ExoData class diagram. Classes labelled

“A” are abstract, “C” are concrete.

Systems

Systems classes represent the controlled systems, with
methods to collect measurements from or set control
inputs to the system. This representation can be real or
emulated using a detailed simulation model. A common
interface to the controlled system in both cases allows
for algorithm development and testing on a simulation
with easy transition to the real system. Similar to
exogenous data, measurement data has a specified
variable organization in the form of a Python dictionary
in order to aid its use by other objects.

Figure 5 presents a basic UML class diagram showing
the relationship of Systems classes. The System class
contains common methods for all system types. Then,
real and emulated system classes inherit the top-level
System class and add methods that are more specific.
For example, the emulated system class requires
methods to simulate a model, rather than establish a
connection with a data server or control system serving a
real system. Finally, concrete classes inherit the system
type methods and implement methods that are more
specific for the emulation or real system source type. At
the time of this writing, MPCPy only supports emulation
by FMU simulation, however, the class design allows for
adding emulation methods and real system sources.

Figure 5 – Systems class diagram. Classes labelled “A”

are abstract, “C” are concrete.

Models

Models classes represent system models that can be used
for MPC optimization, with methods to simulate the

model, estimate parameters or states based on measured
system data, and validate the model based on measured
system data. These are often reduced-order or simplified
models when compared to a system emulation model.

Figure 6 presents a basic UML class diagram showing
the relationship of Models classes. The Model class
contains common methods for an MPC-suited model.
The Model class has two classes for an estimation
method and a validation method. The Estimate class
contains methods common for solving parameter or state
estimation problems. Implementations of the Estimate
class contain specific methods required to setup and
solve the estimation problem with various algorithms.
For example, the estimation problem may be formulated
as an optimization problem, to be solved in JModelica,
or formulated for an Unscented Kalman Filter (UKF),
implemented by EstimationPy. Meanwhile, the Validate
class contains methods common for validating the
estimation process and concrete implementations of this
class apply more specific validation algorithms. For
example, this could be calculating the RMSE between
measured data and simulated data with estimated
parameters. Lastly, the Modelica class inherits the
Model class and adds methods to handle Modelica and
FMI-based models. Many of these methods are inherited
from an FMU class in the Utilities module, not described
in detail here. The class design of models is in such a
way that allows for adding other estimation and
validation methods as well as model formats.

Figure 6 – Models class diagram. Classes labelled “A”

are abstract, “C” are concrete.

Optimization

Optimization classes represent MPC optimization
problems, with methods to setup and solve such
problems.

Figure 7 presents a basic UML class diagram showing
the relationship of Optimization classes. The
Optimization class implements methods for setting up
and solving an MPC optimization problem. It has two
classes for a problem and an optimization package. The
Problem class contains common methods for defining an
optimization problem. Implementations of Problem add
specific methods to setup a particular problem type. At

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1385

