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Abstract 

Within the last decade, needs for building control 
systems that reduce cost, energy, or peak demand, and 
that facilitate building-grid integration, district-energy 
system optimization, and occupant interaction, while 
maintaining thermal comfort and indoor air quality, have 
come about.  Current PID and schedule-based control 
systems are not capable of fulfilling these needs, while 
Model Predictive Control (MPC) could.  Despite the 
critical role MPC-enabled buildings can play in future 
energy infrastructures, widespread adoption of MPC 
within the building industry has yet to occur.  To address 
barriers associated with system setup and configuration, 
this paper introduces an open-source software platform 
that emphasizes use of self-tuning adaptive models, 
usability by non-experts of MPC, and a flexible 
architecture that enables application across projects. 

Introduction 

Background 

In an effort to limit climate change and decrease 
operating costs, energy systems have become the focus 
of widespread concern.  This is especially true with 
those systems associated with buildings, which account 
for approximately 71% (EIA 2016a) of electricity use 
and 40% (EIA 2016b) of total primary energy use in the 
U.S.  While buildings play the largest role in energy use, 
they are largely ill-equipped to handle new performance 
requirements brought about by new concerns.  These 
requirements include energy or carbon minimization, 
peak demand minimization, integration with electrical 
and thermal district energy system operations, and 
occupant and operator feedback and connectivity.  Many 
of these requirements depend upon a building being able 
to consider time-based incentives in the operation of 
multiple subsystems towards a common objective.  
Examples include shifting peak afternoon cooling loads 
towards morning hours, reducing energy use during 
times of high energy prices, coordinating PV generation, 
electric vehicle charging, and occupant service to limit 
the stress on the electric grid, and responsiveness to 
occupants. 

Advancing the State of the Art 

Current state of the art building control systems rely on a 
combination of PID feedback control and schedule-

based setpoint managing without consideration of all of 
the necessary information to decide an optimal 
performance trajectory for a given objective.  This 
includes forecasts of weather, energy prices, and 
building occupancy.  In addition, the current control 
systems do not provide meaningful feedback to operators 
about the impact of certain control actions on system 
performance, which may help operators better manage 
systems according to their objectives. 

Conversely, model predictive control (MPC) can meet 
the emerging requirements of building control systems.  
MPC uses system performance models, which include 
all of the relevant information, to forecast performance 
and optimize control inputs with respect to a given 
objective.  These models can also provide useful 
feedback to system operators or building occupants for a 
number of operating scenarios. 

A large body of work has shown that MPC can help 
enable buildings to meet these new requirements 
(Rockett and Hathway 2016).  However, despite its 
widespread adoption in other industries (Qin and 
Badgwell, 2003) and success in research, it has not been 
widely adopted in the building industry, except for a few 
companies offering MPC as a software service for 
commercial buildings (BuildingIQ 2016, QCoefficient 
2016) and campus central plants (Johnson Controls 
2015).  Rockett and Hathway (2016) point out several 
factors that contribute to the lack of penetration of MPC 
into industry, with the foremost being 1) the lack of 
long-term trials showing the effectiveness of MPC and 
2) the expense and skill required for installation and 
maintenance.  This is particularly true for initial model 
configuration and maintaining model accuracy as 
building operation changes over time.  We believe these 
factors go hand-in-hand, where the high costs of 
installation and maintenance have prevented numerous 
long-term trials, and the low number of long-term trials 
have prevented the development of robust modeling and 
installation approaches. 

Paper Objective 

In order to address the problem of high system setup and 
maintenance costs, increase the number of trials of MPC 
in buildings, and facilitate widespread adoption of MPC 
in the building industry, this paper introduces the 
development of an open-source software platform for 
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MPC in buildings, MPCPy, available on the LBNL 
Simulation Research Group github site at 
https://github.com/lbl-srg/MPCPy under a modified BSD 
license.  A number of specific features are expected to 
contribute to the solution: 

 An emphasis is put on the use of adaptive models, 
which use measurements of the building 
performance to continually update and remain 
accurate enough for control optimization, as 
illustrated in Figure 1.  Such models are expected to 
drastically reduce model setup and maintenance 
costs.   

 Automatic model parameter estimation and 
optimization problem formulation together with 
flexible data input modules reduce the required 
MPC and programming expertise of users. 

 The use of open software standards enable 
contributions from other researchers and adoption 
by industry, while maintaining code maintenability 
and longevity due to the use of standards that have 
support in many industrial sectors. 

 An extensible architecture enables rapid 
development and distribution of new MPC methods. 

 

 
Figure 1 – MPCPy emphasizes the use of self-

adapting models for MPC optimization. 

 

While previous research has developed software 
frameworks for MPC in buildings, most have been 
developed for specific project requirements (such as data 
sources, processing methods, building simulation 
packages, and optimziation solvers) and are not made 
available for public use.  Those that are offered to the 
public in some way require costly commercial software, 
such as MATLAB (Zakula et al. 2014, Bernal et al. 
2012, Sturzenegger et al. 2014), or are focused on one 
aspect of the MPC process, such as reduced-order model 
development (Sturzenegger et al. 2014, DeConinck et al. 
2016).  In contrast, the framework introduced here looks 

to address all aspects for building MPC in an externsible 
way, is freely available, and is provided open-source. 

The remainder of the paper will describe the architecture 
of MPCPy and present examples to showcase its 
capabilities.  This paper will not address open research 
questions about proper adaptive model configurations 
and learning procedures, nor will it address guidelines 
for connecting to building automation systems (BAS).  
However, it is expected that MPCPy could be used 
extensively to answer these and other questions. 

Architecture 
MPCPy is designed using an object-oriented approach 
that promotes extensibility and is scripted in Python 2.7.  
The architecture is adapted from a tool-based 
architecture approach for computer-aided control design 
software (Barker et al. 1993 and Jobling et al. 1994), and 
is shown in Figure 2.  In such an architecture, tools are 
developed to perform very specific functions, and then 
are supported by common processing agents and 
combined to perform various tasks.  In MPCPy, four 
class modules represent the tools needed for MPC:  

 ExoData classes collect external data and process it 
for use within MPCPy. 

 System classes represent real or emulated systems 
to be controlled, collecting measurements from or 
providing control inputs to the systems. 

 Models classes represent system models for MPC, 
managing model simulation, estimation, and 
validation. 

 Optimization classes formulate and solve the MPC 
optimization problems using Models objects.   

Supporting the four tools are three modules for data 
handling and processing during run-time: 

 Variable and Unit classes together maintain the 
association of static or timeseries data with units. 

 Utility classes provide functionality needed across 
tools and for interactions with external components. 

MPCPy does not contain any of its own model 
specifications or solvers.  Instead, it relies on external 
software, modeling languages, and solvers.  While 
dependencies can be expanded to include other software, 
these external components are currently based on the 
Modelica (Mattsson and Elmqvist 1997) and Functional 
Mock-up Interface (FMI 2016) open standards, with 
system emulation models and MPC models able to be 
defined as native Modelica files or as Functional Mock-
up Units (FMU).  An FMU is a zipped file containing 
the variables and equations of a model that can be used 
to exchange the model between simulation programs. 
Optionally, solvers and additional data can be packaged 
as well.  Substantial development of the application of 
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Figure 2 – MPCPy architecture. 

 

these standards to building simulation and optimization 
is ongoing (Wetter et al. 2015 and Wetter and Treeck 
2015).  JModelica (Modelon AB 2009), an open-source 
Modelica compiler, is used to compile native Modelica 
models, simulate FMUs, and solve optimization 
problems, while EstimationPy (Bonvini et al. 2014) can 
be used for model parameter and state estimation using 
FMUs.  Therefore, any Modelica library can be used to 
create native Modelica models, including the Modelica 
Buildings Library (Wetter et al. 2014) or any from the 
Annex 60 collaboration (Wetter et al. 2015), as can any 
modeling software capable of generating FMUs.  While 
there exist methods to solve control optimization 
problems using highly detailed, non-differentiable 
models (Wetter 2001), we strongly recommend the use 
of differentiable models for control optimization, which 
can be solved very efficiently (Wetter et al. 2016). 

The following sections will detail the features of the 
Variables, Units, ExoData, Systems, Models, and 
Optimization module classes. 

Variables and Units 

Variable and Units classes allow MPCPy to effectively 
associate data with units as well as handle timeseries 
data separately from static (constant) data.  The Python 
package Pandas (McKinney 2010) is integrated into the 
handling of timeseries variables, bringing to MPCPy the 
many useful features Pandas has to offer for data 
storage, cleaning, resampling, interpolation, and 
statistical analysis. 

Figure 3 presents a basic Unified Modeling Language 
(UML) class diagram, commonly used in the field of 
software development, showing the relationship of 
Variables and Units classes.  The Variable class defines 
common methods for MPCPy variables, while the Static 
and Timeseries classes inherit the Variable class and 
implement methods more specific to data that is constant 
and time-varying respectively.  Units are added to 

variable objects upon instantiation and act upon the 
variable data depending on the action.  Each unit is part 
of a quantity type.  For example the unit degC is a 
temperature quantity.  Each quantity has a base unit in 
which all data is stored, which follows the convention 
defined by the Modelica Standard Library (Modelica 
Association 2016).  The display unit, however, defines 
the conversion of the data to that base unit upon input, or 
conversion from that base unit upon display or output.  
The DisplayUnit class defines these required methods, 
with additional methods specified in quantity-specific 
classes. 

 

  
Figure 3 – Variables and Units class diagram.  Classes 

labelled “A” are abstract, “C” are concrete. 

 

ExoData 

ExoData classes are responsible for the representation of 
exogenous data, with methods to collect this data from 
various sources and process it for use within MPCPy.  
Exogenous data is separated according to a data class 
and each data class has a specified variable organization 
in the form of a Python dictionary.  This allows for an 
internal understanding of where objects should look for 
specific data and the use of specific checks for each data 
class.  At the time of this writing, there are eight types of 
data classes: Weather, Internal, Controls, Constraints, 
Prices, Parameters, and Other Inputs. 

Figure 4 presents a basic UML class diagram showing 
the relationship of ExoData classes.  At the top is the 
Type class that contains common methods for all 
exogenous data class types.  Then, there exists an 
abstract class for each exogenous data class, which 
inherits the Type class and adds additional methods 
specific for that data class.  These include assertions that 
particular variables fall within limits or methods for 
manipulating the data dictionary for that data class.  
Finally, source-specific classes inherit the type-specific 
data classes and add methods required to collect data 
from a particular source.  For example, an EPW file or 
CSV file may be the source of weather data.  At the time 
of this writing, aside from this choice, CSV files must be 
the source of all other data types.  However, similar to 
the EPW and CSV example, the class designs allow for 
easy addition of other data class sources and types. 
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Figure 4 – ExoData class diagram.  Classes labelled 

“A” are abstract, “C” are concrete. 

Systems 

Systems classes represent the controlled systems, with 
methods to collect measurements from or set control 
inputs to the system.  This representation can be real or 
emulated using a detailed simulation model.  A common 
interface to the controlled system in both cases allows 
for algorithm development and testing on a simulation 
with easy transition to the real system.  Similar to 
exogenous data, measurement data has a specified 
variable organization in the form of a Python dictionary 
in order to aid its use by other objects. 

Figure 5 presents a basic UML class diagram showing 
the relationship of Systems classes.  The System class 
contains common methods for all system types.  Then, 
real and emulated system classes inherit the top-level 
System class and add methods that are more specific.  
For example, the emulated system class requires 
methods to simulate a model, rather than establish a 
connection with a data server or control system serving a 
real system.  Finally, concrete classes inherit the system 
type methods and implement methods that are more 
specific for the emulation or real system source type.  At 
the time of this writing, MPCPy only supports emulation 
by FMU simulation, however, the class design allows for 
adding emulation methods and real system sources. 

 

  
Figure 5 – Systems class diagram.  Classes labelled “A” 

are abstract, “C” are concrete. 

 

Models 

Models classes represent system models that can be used 
for MPC optimization, with methods to simulate the 

model, estimate parameters or states based on measured 
system data, and validate the model based on measured 
system data.  These are often reduced-order or simplified 
models when compared to a system emulation model. 

Figure 6 presents a basic UML class diagram showing 
the relationship of Models classes.  The Model class 
contains common methods for an MPC-suited model.  
The Model class has two classes for an estimation 
method and a validation method.  The Estimate class 
contains methods common for solving parameter or state 
estimation problems.  Implementations of the Estimate 
class contain specific methods required to setup and 
solve the estimation problem with various algorithms.  
For example, the estimation problem may be formulated 
as an optimization problem, to be solved in JModelica, 
or formulated for an Unscented Kalman Filter (UKF), 
implemented by EstimationPy.  Meanwhile, the Validate 
class contains methods common for validating the 
estimation process and concrete implementations of this 
class apply more specific validation algorithms.  For 
example, this could be calculating the RMSE between 
measured data and simulated data with estimated 
parameters.  Lastly, the Modelica class inherits the 
Model class and adds methods to handle Modelica and 
FMI-based models.  Many of these methods are inherited 
from an FMU class in the Utilities module, not described 
in detail here.  The class design of models is in such a 
way that allows for adding other estimation and 
validation methods as well as model formats. 

 

   
Figure 6 – Models class diagram.  Classes labelled “A” 

are abstract, “C” are concrete. 

 

Optimization 

Optimization classes represent MPC optimization 
problems, with methods to setup and solve such 
problems. 

Figure 7 presents a basic UML class diagram showing 
the relationship of Optimization classes.  The 
Optimization class implements methods for setting up 
and solving an MPC optimization problem.  It has two 
classes for a problem and an optimization package.  The 
Problem class contains common methods for defining an 
optimization problem.  Implementations of Problem add 
specific methods to setup a particular problem type.  At 
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