
Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1083
https://doi.org/10.26868/25222708.2017.287

Fast and Robust External Solar Shading Calculations 

using the Pixel Counting Algorithm with Transparency 

 

Joel Hoover, Timur Dogan 

jah552@cornell.edu, tkdogan@cornell.edu 

Environmental Systems Lab, Cornell, Ithaca, New York, USA 

 

 

 

 

Abstract 

External solar shading calculations play an important role 

in energy models for buildings. Current simulation 

software implements polygon clipping algorithms for 

these calculations. However, polygon clipping suffers 

from several limitations, such as high computational costs 

and, for complex geometry, robustness issues. These 

weaknesses are a major bottleneck for the simulation of 

large scale urban building energy modelling (UBEM). 

This paper introduces a graphics hardware accelerated 

shading algorithm that uses pixel counting and supports 

transparency. The algorithm has been integrated in 

EnergyPlus and proves to be on average 2 times faster 
than EnergyPlus’s shading algorithm, while maintaining 

an accuracy of 0.01. 

Introduction 

The current trend of population-growth and urbanization 

requires construction and densification of urban centers 

globally. With 33% of carbon emissions coming from 

buildings, this development is worrisome, but also 
presents a great opportunity to mitigate climate change 

through effective use of solar energy and energy 

efficiency measures in buildings. One crucial component 

of sustainable and passive environmental performance 

driven design is solar control and effective use of the suns 

energy in order to reduce heating and cooling loads by 

utilizing passive solar gains in the winter and effective 

solar shading in the summer (Olgyay, Olgyay, and others 

1976). 

Recent developments in the field of dynamic building 
simulation have provided holistic, well-validated building 

energy simulation frameworks such as EnergyPlus 

(Crawley et al. 2001), TRNSYS (Klein 1979) and others 

(Crawley et al. 2008) that can predict most relevant 

environmental performance indicators. Such software 

allows designers to optimize a buildings orientation and 

solar exposure to minimize HVAC energy consumption. 

This optimization is even more important at the urban 

scale – where building volume, position and orientation 

are determined – and the impact of these design decisions 

affect many buildings. 

Since the solar environment greatly impacts a building’s 

energy performance, reliable solar shading calculation is 

one of the most important components of these tools. 

Solar shading consists of three components: direct beam 

radiation, indirect diffuse radiation, and reflected 

radiation. In this paper, we are only concerned with beam 

radiation. The equation for calculating the solar heat gain 

from direct beam radiation is 

𝑄beam =𝛼𝐼b
𝐴s

𝐴t

cos 𝜃                           (1) 

where 𝑄beam = solar heat gain per unit area, 𝛼= fraction 

of solar absorption of the surface, 𝐼b = intensity of direct 

beam radiation, 𝐴s = sunlit surface area, 𝐴t = total 

surface area, and 𝜃= angle between sun’s rays and the 

surface’s normal vector (EnergyPlus Development Team 

2016). The most computationally intense part of this 

equation comes from the 𝐴s component, which requires 
consideration of the surface’s context and determining 

what amount of the surface is exposed to the sun and not 

hidden in the shadow of another surface. Rather than 

calculate 𝐴s directly, the term (𝐴s 𝐴t)⁄ cos 𝜃 is often 

calculated instead. This value is called the projected sunlit 

surface fraction (PSSF), and our focus is to efficiently 

calculate this value. 

There are two general approaches to finding the PSSF at 

any time during the simulation. The EnergyPlus method 

is to calculate the PSSF for each surface of the building 

for each simulation time step throughout the entire year. 

The other method, employed by TRNSYS, is to divide the 

sky into many small sky patches, and calculate the PSSF 
of each surface as if the sun was in the center of each sky 

patch. Then, to get the PSSF for any time step, the PSSF 

of the sky patches around the sun position are averaged. 

There are advantages and disadvantages to both 

approaches, but both require an underlying algorithm to 

calculate the PSSF values for the sun at a given location 

in the sky. 

There are four classes of algorithms that can be used to 

calculate PSSF values: Trigonometric algorithms for 

awnings, fins, and horizons; ray tracing; polygon 

clipping; and pixel counting. 

First, trigonometric algorithms allow for the PSSF to be 

calculated quickly and exactly, but only work for very 

simple shading devices, such as overhangs and wing walls 

(McCluney 1990). While these algorithms are still 

implemented in modern simulation software, namely 

TRNSYS, their strict requirements on the shading 

geometry limit their application. For complicated shading 

systems or for contextual shading, such as for buildings 

on the opposite side of the street, another shading 

algorithm must be used. 
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Second, polygon clipping algorithms is a class of 

geometric algorithms that calculate the PSSF accurately, 

and unlike trigonometric algorithms, they do not place 

overly strict restrictions on the geometry. As such, they 

have been implemented and are still widely used for 

calculating PSSF. The general outline for a polygon 

clipping algorithm is as follows: First, take all the surface 

and all the shading geometry in the scene, and project 
them onto the plane perpendicular to the direction of the 

direct beam radiation. Then, for each shading surface in 

the scene, the projected polygon is “clipped” from the 

projected polygon of the surface. Finally, take the area of 

the resulting polygon and divide it by the area original 

surface to get the PSSF. For a more comprehensive 

description of the various polygon clipping algorithms, 

refer to (Hiller, Beckman, and Mitchell 1996). Polygon 

clipping has many limitations, however, which makes it 

less than ideal. It still places some restrictions on the 

geometry: for most algorithms, polygons must be convex, 

and robustness issues can occur when multiple shadows 

overlap, which can cause the algorithm to fail even for 

relatively simple geometry. Further, current 

implementations are extremely slow, with the polygon 

clipping shading algorithm being one of the most time-

consuming component of the simulation. 

Third, ray-tracing based methods directly simulate 

individual rays of sunlight falling on the surfaces 

bouncing around the scene. Because the simulated rays 

are independent and can be reflected, ray-tracing can 

simulate not just direct beam radiation, but also reflected 

radiation. Therefore, it is a promising approach to 
improve accuracy of both direct and diffuse calculation 

methods, as well as distribution of sunlight on the interior 

of the building. However, since these methods need to 

simulate a large number of independent rays to get 

accurate results, they end up being computationally 

expensive and are therefore less suitable for urban/early 

design applications. EnergyPlus calculates that the diffuse 

component using a coarse ray casting method, as opposed 

to full ray tracing, and assumes that this is sufficiently 

accurate. Hence, the computational overhead required for 

ray-tracing is only justifiable in special cases where 

propagation of the diffuse radiation plays a significant 

role. 

Finally, pixel counting algorithms allow for fast 

approximation of the PSSF through computer graphics 

based methods: they approximate the PSSF by rendering 

the scene to an image buffer and counting the number of 

pixels visible from the suns viewing angle to estimate the 

exposed area of each surface (Yezioro and Shaviv 1994). 

The most recent implementation of such an algorithm is 

described by Jones et al. (Jones, Greenberg, and Pratt 

2012) and it is shown that shading calculations can be 

accelerated significantly without sacrificing accuracy. 
The pixel counting approach can handle complex 

geometry, including elaborate shading devices, without a 

loss in accuracy, which alleviates the current necessity to 

oversimplify the energy model’s input geometry. Jones et 

al.’s implementation is unfortunately not publicly 

available. Another limitation of their implementation is 

the lack of transparency support. Transparency is relevant 

in early building and urban design to model vegetation 

coverage, which would need prohibitively complex 

geometry to model exactly, but can be approximated by 

only a few transparent polygons. Vegetation also often 

has seasonal changes, which can easily be modelled by 

assigning a schedule to the transparency. Additionally, 

shading systems that are either change dynamically or 
include fritted or metal mesh facades can be modeled 

using transparency, which is useful for efficiency 

purposes. In urban design, this level of detail is generally 

not modelled geometrically due to CAD software 

limitations and the large burden on the designer. Using 

simple surfaces with transparency keeps the polygon 

count manageable, while still providing a close 

approximate of more detailed designs. Hence, this paper 

describes a publicly available solar shading simulation 

tool that is GPU accelerated, supports transparency, and 

can be used in conjunction with EnergyPlus. 

 

Figure 1: Capture of the pixel counterôs internal color 

buffer for Case #8 at 15% (left), 40% (middle), and 80% 

(right) transparency. 

 
Figure 2: Urban Test Case #9 

 
 

 
 

Figure 3: ISO Validation Cases #1 (left) through #4 

(right). 
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Methods and Implementation 

The Pixel Counting Algorithm 

Our pixel counting algorithm for calculating PSSF is 

inspired by the algorithm proposed by Jones et al. The 

general outline of this algorithms is as follows: first, the 

entire scene, except for the surface of interest, is rendered 

(drawn) to an image buffer. Then, an OpenGL query 

object is generated, and the surface of interest is rendered 

to the buffer. (It is important to note that depth 

information is retained as part of the image buffer, so that 

anything in the scene that is in front of the surface will 

occlude the surface at the pixels of overlap, even though 

the surface is rendered later.) Next, the query object is 

read, yielding the number of pixels in the buffer that were 

affected by the surface of interest. Finally, the pixel count 
is converted into area, from which the PSSF can be 

calculated. This entire process is then repeated for every 

surface of the building. The renders are performed with a 

special setup: the camera is configured so that the 

projection is orthogonal (to model the sun’s rays as being 

parallel), that the angle of the rays correspond to the sun’s 

position in the sky, and that the surface of interest takes 

up as much of the render buffer as possible. Finally, each 

surface is given a unique color as an identifier. 

For our algorithm, we make three major modifications. 

First, instead of scaling the render so that the surface of 

interest covers the entire buffer, so that each surface has 

its own transformation, the render is scaled such that all 

surfaces are visible with only one transformation. This 

allows the entire scene to only be rendered once, rather 

than needing the entire scene to be rendered again and 

again for every surface. To find the number of pixels in 

the final buffer that belong to a given surface, we activate 

an OpenGL query object, draw the given surface again, 

and then read back the result of this query object. These 

queries are performed for every active surface in the 

scene. Because we need all the active surfaces to be 

contained in the final render, we can no longer perform 
the per surface scaling à la Jones et al.’s algorithm. 

However, our method greatly reduces the number of 

renders required, as we only need one per sun position 

rather than one per active surface per sun position.  

Our second modification is to add probabilistic model of 
transparency as follows: we apply a shader that will 

pseudo-randomly discard pixels from triangles as they are 

being rendered, where the probability of a pixel being 

dropped is equal to one minus the opacity of the pixel. 

That is, a triangle with opacity 1.0 will have no pixels 

discarded (fully opaque), a triangle with opacity 0.0 will 

have all pixels discarded (fully transparent), and a triangle 

with opacity 0.5 will have approximately half of its pixels 

discarded (50% transparent). The pseudo-random 

algorithm in the shader is seeded with the id of the surface, 

so that same surface rendered twice will have the exact 

same pixels discarded. A visualization of the transparency 

in action can be seen in Figure 1, which are captures from 

the pixel counter for test Case #8. 

For our final modification, we add a stencil buffer to 

handle intersecting surfaces. Since we place no 

restrictions on the geometry, it is possible for two surfaces 

to intersect each other, and the pixels at the intersection 

will be counted twice. To resolve this issue, we add a 

stencil buffer to our render target; then during the second 

query pass, drawing to a pixel sets the stencil buffer at that 

pixel to 1 and cause further draws to that pixel to be 

discarded. Thus, each pixel will only be counted once. 

Implementation 

We have implemented our algorithm in C# using the 

OpenTK bindings to OpenGL. It requires OpenGL 2.0 or 

higher, and the extension EXT_Framebuffer_Object must 

be supported. We have also designed several Grasshopper 

components that allow our algorithm to be used in the 

Rhino CAD software. Finally, we have a modified version 

of EnergyPlus that reads in the shaded fractions from a 

file, allowing us to perform energy simulations using our 

pixel counting generated values. The implementation is 

available at es.aap.cornell.edu. The pixel counting 

codebase is split into several sub-projects: ShadingBase, 

PixelCountingLib, PixelCountingTest, and 

PixelCountingPlugin. ShadingBase provides as set of 

classes that abstract away certain details of the pixel 

counting code, such as geometry specification and error 

reporting. This would allow, for example, alternate pixel 

counting algorithm, or even a polygon clipping algorithm, 
to be implemented with the same interface, allowing easy 

comparison between the two algorithms. 

PixelCountingLib is the actual implementation of our 

pixel counting algorithm, and implements the interface 

given in ShadingBase. PixelCountingTest contains a few 

test cases for the PixelCountingLib implementation. 

Finally, PixelCountingPlugin provides the Grasshopper 

components that allow our algorithm to be used in Rhino. 

To control the number of pixels used for the render buffer, 

our implementation calculates the optimal size given a 

“resolution” from the user. A resolution is given in area 

(in cm2), and defines the maximum area that a pixel can 

have. Once the geometry is given, the implementation 

calculates the number of pixels needed to render the 

geometry and then uses that number of pixels internally. 

Testing Methodology 

We test our implementation against 9 test cases, with each 

case evaluated for accuracy, speed, and robustness. 

Accuracy is validated against analytic values (if 

available), and/or against the shaded fractions generated 

by EnergyPlus. Each test case is evaluated at the 

resolution sizes of 4000cm2, 400cm2, 40cm2, and 4cm2. 

Test cases #1-#6 are taken form an ISO standard for 

shading calculation validations (“ISO 13791:2012-03 

Thermal Performance of Buildings - Calculation of 

Internal Temperatures of a Room in Summer without 

Mechanical Cooling - General Criteria and Validation 

Procedures” 2012). Test cases #1-#4 are illustrated in 

Figure 3. We validate our implementation against the 
values for the sunlit fraction at various sun positions as 

given in the standard. We additionally validate and speed 

test our implementation against EnergyPlus by comparing 

the PSSF values for every one hour time step in a year 

https://es.aap.cornell.edu/
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simulation at Phoenix, Arizona and at Anchorage, Alaska, 

for each case. Additionally, both validation tests are done 

at the resolutions of 4000cm2, 400cm2, 40cm2, and 4cm2. 

Test case #7 is a sequence of small cylinders outside of 

the standard south facing building in test case #1-#3. 

There are 75 cylinders, each 4m long and with a 20cm 

diameter. They are equally spaced vertically to take up the 

entire 3m height of the building, and are placed 0.1m 

away from the south wall. We then select the sun positions 

that are due south at elevation 0º, 5º, and 10º elevation and 

use pixel counting at various resolutions to find the PSSF. 

Additionally, a timing test is performed for the pixel 

counting implementation to calculate the PSSF at 4000 

random sun positions. This test will allow us to determine 
how the pixel counting algorithm handles extremely fine 

geometry, what resolution is needed to attain satisfactory 

accuracy, and how well the implementation handles a 

large number of shading surfaces. 

Test case #8 is again the standard south facing building 

and window from cases #1-#3, but we add a transparent 
enclosure that extends 2m from the south-facing wall. We 

then run an EnergyPlus simulation at Phoenix, Arizona 

and at Anchorage, Alaska, and use the hourly PSSF values 

to validate our transparency implementation. The 

enclosure is tested at 0%, 15%, 40%, and 80% 

transparency (where 0% is fully opaque and 100% fully 

transparent), and the resolution for our pixel counter is 

tested at 4000cm2, 400cm2, 40cm2, and 4cm2. This test 

will compare the accuracy of our transparency 

implementation to the EnergyPlus transparency 

algorithm. Test case #9 is a full scale urban model 

containing 121 buildings in a 600m by 800m block. The 

model is illustrated in Figure 2. Windows are placed on 

each wall of all buildings to cover 95% of the width and 

95% of the height of the wall. We then perform a yearly 

EnergyPlus simulation at Phoenix, Arizona and at 

Anchorage, Alaska and compare the resulting PSSF 
against our pixel counting implementation at resolution 

4000cm2, 400cm2, 40cm2, and 4cm2. This test will 

function as a stress test for our implementation, testing if 

it is robust enough to handle an entire urban scene with 

many active and shading surfaces. 

All pixel counting tests and EnergyPlus simulations were 

run on a Mid-2014 MacBook Pro with 2.6 GHz Intel Core 

i5 with 8GB RAM with an Intel Iris 1536 MB. The only 

exception is Case #9, where the EnergyPlus simulations 

were performed on a Windows 10 Desktop with a 3.0 

GHz Intel i7 6950x and 64 GB RAM. The version of 

EnergyPlus used is 8.5.0.  

Results 

The results from the DIN EN ISO 13791:2012-08 

validation are shown in Figure 4. Additionally, the 

acceptable error range as specified by the standard is 

highlighted in green in the graphs. In graphs (a) and (b), 

we see that the errors at 4000cm2 and 400cm2 are well 

outside the acceptable tolerances and clearly fail 

validation. The 40cm2 resolution in graph (c) almost 

passes, but fails at the 7:30 time step and Case #6 at noon, 

and Case #2 pushes the bounds from 8:30 to 9:30. Finally, 

at the 4cm2 resolution in graph (d), all errors are well 

within the tolerance, except again for at 7:30 and Case #6 

at noon. 

While these results seem to indicate that none of the 

resolutions tested are accurate enough, we note that all the 

significant errors at 4cm2 and 40cm2 occur while the sun 

is at low angle relative to the window. At such low sun 

angles, very little radiation is hitting the window, and so 

large errors in the sunlit fraction of the window result in 

relatively small errors in the amount of radiation received. 

For example, the south-facing windows in Cases #1-#4 

would receive only 7.7% of the radiation at 7:30 than at 

noon, and so a 4% error in sunlit fraction that would be 

within tolerance at noon is equivalent to an almost 50% 
error in sunlit fraction at 7:30. Likewise, for Case #6 at 

noon, the sun position is in the plane of the window, so no 

radiation will fall on the window, and so any value given 

for sunlit fraction is meaningless, as it will be multiplied 

by 0 before used for any further calculations. Thus, the 

large apparent error in Case #6 at noon is meaningless. 

Because of these issues with sun position at low angles, 

we use PSSF instead of sunlit fraction in our further 

accuracy evaluations, as it is directly proportional to the 

amount of radiation hitting a surface. 

The results of the validation of Cases #1-#6 against 
EnergyPlus are presented in histograms in Figure 5 (a)-

(d), and the mean and standard deviation in the errors are 

reported in Table 1. The times in which the PSSF is zero 

have been excluded. We see that the distribution of errors 

roughly follows a normal distribution and is centered 

around 0. At 40cm2 resolution, all the errors are within 

0.05, and the 4cm2 resolution, within 0.01. However, the 

Anchorage location has consistently higher error than the 

Phoenix location. Figure 6, which plots error against sun 

elevation, explains why: both the Phoenix and Anchorage 

locations have very similar error distributions at a given 

sun elevation, and that lower sun elevations has tends to 

have larger error than higher sun elevations. Since 

Anchorage has lower sun elevations than Phoenix, 

Anchorage has a greater average error in the PSSF.  

The timings for Cases #1-#6 are presented in Table 2. To 

generate the EnergyPlus timing, two simulations were run 

for each case, once by running EnergyPlus by 

recalculating shading every day, and one by recalculating 

shading one a year, and then the difference in timings 

between the two runs is reported. The EnergyPlus shading 

calculations took between 1.82 and 2.12 seconds. By 

contrast, the pixel counting simulations took between 0.68 
and 0.89, except for the 4cm2 resolution for Cases #4 and 

#6, which took 1.4 and 1.5 seconds, respectively. 

For small cylinder Case #7, a simulation using 

EnergyPlus was attempted. However, due to the 

extremely high polygon count of the cylinders, 

EnergyPlus did not advance past the “Initializing 
Simulation” phase in over 24 hours, so the simulation was 

aborted. Luckily, there is an approximate analytic solution 

to this shading problem if we limit the sun position to be 

due south with an angle of elevation 𝜃, from the horizon 

at 𝜃=0° to the elevation where the cylinders block all  
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Figure 4: The error in the ISO validation test at each 

sun position during the sample day at resolutions (a) 

4000cm2, (b) 400cm2, (c) 40cm2, and (d) 4cm2. 
 

 

 

 

 

 

 
Figure 5:  Histograms of the error distribution against 

EnergyPlus values for all Cases #1-#6 at Phoenix and 

Anchorage simulations at resolutions (a) 4000cm2, (b) 

400cm2, (c) 40cm2, and (d) 4cm2. 
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Figure 6: Plot of error in PSSF vs. sun elevation for ISO 

Case #3 at 40cm2 resolution at Phoenix and Anchorage. 
 

 
Figure 7: Plot of error in PSSF vs. resolution for small 

cylinder Case #7 at 0º elevation.  
 

 
Figure 8: Plot of error in PSSF vs. resolution for small 

cylinder Case #7 at 0º, 5º, and 10º elevations over 

resolutions 100cm2 to 0.01cm2. 

 

Table 1: EnergyPlus validation errors for Cases #1-#6. 
 

Place Resolution Mean Std. Dev. 

P
h

o
en

ix
 

4000 cm2 -0.0144 0.0970 

400 cm2 0.0058 0.0363 

40 cm2 -0.0014 0.0109 

4 cm2 -0.0001 0.0033 

A
n

ch
o

ra
g

e 

4000 cm2 -0.0496 0.1211 

400 cm2 0.0109 0.0464 

40 cm2 -0.0018 0.0142 

4 cm2 0.0000 0.0041 

 

Table 2: The timing results of ISO Test Cases #1-#6 at 

Phoenix for EnergyPlus shading calculations and pixel 

counting at various resolutions. 

Case 
Energy 

Plus 

Pixel Counting 

4000cm2 400cm2 40cm2 4cm2 

#1 1.90 0.70 0.69 0.76 0.80 

#2 2.06 0.68 0.74 0.74 0.72 

#3 1.82 0.72 0.68 0.89 0.78 

#4 2.12 0.71 0.69 0.76 1.40 

#5 1.98 0.73 0.73 0.67 0.82 

#6 1.82 0.70 0.72 0.72 1.50 

 

Table 3: The accuracy statistics for Case #8 at various 

resolutions. 
 

Resolution Transparency Mean Std. Dev 

4000 cm2 

0% 0.0084 0.1395 

15% 0.0062 0.1355 

40% 0.0051 0.1207 

80% -0.0024 0.0777 

400 cm2 

0% 0.0050 0.0446 

15% 0.0049 0.0434 

40% 0.0029 0.0400 

80% -0.0001 0.0253 

40 cm2 

0% -0.0015 0.0138 

15% -0.0007 0.0136 

40% -0.0010 0.0129 

80% -0.0004 0.0082 

4 cm2 

0% -0.0001 0.0044 

15% 0.0003 0.0044 

40% -0.0001 0.0040 

80% 0.0000 0.0026 
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Figure 9: Histograms of the error distribution against 

EnergyPlus values for all Cases #1-#6 at Phoenix and 

Anchorage simulations at resolutions (a) 4000cm2, (b) 

400cm2, (c) 40cm2, and (d) 4cm2  

 

Table 4: The timing results of Urban Case #9 for 

EnergyPlus shading calculations and pixel counting at 

various resolutions. 
 

  Piecewise Model Full Model 

EnergyPlus 14758 s — 

P
ix

el
 C

o
u

n
ti

n
g
 4000 cm2 1789 s 852 s 

400 cm2 1975 s 1020 s 

179 cm2 — 1218 s 

40 cm2 3816 s — 

4 cm2 20930 s — 

 

Table 5: Statistics on errors for Cases #9. 
 

Place Resolution Mean Std. Dev. 

P
h

o
en

ix
 4000 cm2 0.00005 0.0257 

400 cm2 -0.00002 0.0105 

40 cm2 -0.00001 0.0057 

4 cm2 0.00000 0.0025 
A

n
ch

o
ra

g
e 4000 cm2 0.00411 0.0595 

400 cm2 -0.00002 0.0118 

40 cm2 0.00000 0.0065 

4 cm2 0.00000 0.0022 

 

light at 𝜃=60°. This solution is presented in Equation 2 

below. 

𝑃𝑆𝑆𝐹= cos𝜃−12⁄                       (2) 

This equation is, however, only an approximation, as it 

does not account for cylinders near the edge of the 

window that only part of the cylinder shades the window. 

The maximum error is the proportion of the diameter of 

the cylinder compared to the window height, which is 

20𝑐𝑚2𝑚⁄ =0.01. 

Figure 7 presents the error vs resolution for the sun at 0º 

elevation for 100 resolutions between 100 cm2 and 27.8 

cm2. Within these resolutions, the error fluctuates 
between -0.049 and 0.105. Figure 8 presents the error vs 

resolution for the sun at 0º, 5º, and 10º at 14 resolutions 

between 100 cm2 and 0.012 cm2. At the coarse 

resolutions, the errors are as large as -0.103, but as the 

resolution increases, the error decreases down to errors 

smaller than 0.01 for the smallest resolutions between 

0.1 cm2 and 0.012 cm2. Together, these tests show that 

small changes in resolution can lead to large changes in 

error when the resolution is too coarse for the geometry, 

but as the resolution increases, this variation decreases, 

and the error can be bounded. Finally, for the timings 

test of Case #7, it took the implementation only 37.6 

seconds to perform the 4000 renders, which is extremely 

good performance, as the cylinders are constructed of 

about 1.6 million triangles. 

For Case #8, Table 3 presents the mean and standard 
deviation for the errors against the PSSF reported by 
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EnergyPlus. We again see that the means are very close to 

zero, and that the standard deviation decreases as 

resolution increases. One interesting observation is that 

the standard deviation is smaller for more opaque 

surfaces, although this is likely due to the PSSF itself 

being smaller, causing errors to naturally shrink as well. 

Finally, we have Case #9. We had many issues attempting 

to simulate the large urban model with EnergyPlus. First, 

we attempted to run a simulation of the entire model, but 

this simply caused EnergyPlus to crash. Next, we 

generated a piecewise model, which simulated each 

building individually, including as shading surfaces any 

building within 150 meters. While a few of these 

simulations took under 10 minutes, a majority took over 
an hour, with some taking as long as 23 hours. In total, the 

simulations took 55 days, 20 hours, and 21 minutes of 

CPU time. In addition to the extremely long runtime, 

many of the simulations reported “severe errors” during 

the shading calculations, and that the “Shadowing values 

may be inaccurate.” So, we performed one further 

simplification to the piecewise model: only selecting as 

shading surfaces walls that are within 150 meters and face 

the center of the simulation building. This finally yielded 

simulations that completed in a reasonable amount of 

time, 19 seconds in the fastest case and 282 seconds in the 

longest case. However, there was still one simulation that 

reported severe errors during the shading calculations, 

and 20 other files that, while not reported as severe, 

produced warnings during the shading calculation that 

indicate an error occurred while generating some of the 

shaded fractions. 

As opposed to EnergyPlus, the pixel counting 

implementation had no issues with running a simulation 

on the entire model. However, due to the hardware only 

supporting up to 8192 pixel by 8192 pixel framebuffers, 

in addition to the huge 500 meter by 700 meter model, the 

pixel counter could only simulate up to 179 cm2 
resolution. We also ran the pixel counter against the 

piecewise model that EnergyPlus could simulate for the 

accuracy comparison. The timings for these are reported 

in Table 4. 

Table 5 provides the statistics on error in the urban case 
for each resolution. As for the ISO Cases, we again see 

that the mean is extremely close to 0, and that the standard 

deviation is larger for coarser resolutions. Figure 9(a)-(d) 

provides histograms of the errors for each resolution using 

the same bins as in Figure 5. Note that these histograms 

are logarithmic on the vertical axis. The shape of the 

distribution is again normal like, but there also seems to 

be a slight left skew to the distribution, and it appears that, 

for large errors, there are more negative errors than 

positive. Furthermore, there are many errors at the 

extreme edges of the histogram. These errors, along with 

most of the moderate errors, originate from the 20 

simulations that that produced the warnings during the 

shading calculations. If we exclude these simulations, the 

errors are much more tightly bound, especially for the 

finer resolutions. 

 

Discussion  

The results in the previous section are overall very 

positive. For example, for Cases #1-#6, our 
implementation can calculate the PSSF values with an 

error of less than 0.05 at 40 cm2 and less than 0.01 at 4 

cm2 with an average time of under half that of EnergyPlus. 

We see a similar pattern for Case #9, the urban model, 

where over 99.9% of the errors are less that 0.01 at 40cm2 

resolution, and well over twice the speed compared to the 

EnergyPlus simulation. Finally, Case #7 shows that our 

pixel counting implementation can handle a large number 

of shading surfaces without stability issues or an 

astronomical increase in run time. There is also an 

interesting pattern in the timing of a model, where for 

relatively coarse resolutions, a change in the resolution 

have little impact on the timing, whereas it has a huge 

impact at higher resolutions. This is because there is a 

certain overhead with render calls and transfering counts 

from the GPU that is independent of the number of pixels 

in the render target. This is why, for example, nearly all 

of the ISO test cases have the same timings, except for 
Case #4 and #6, which, due to their larger geometry size, 

need significantly more pixels for the same resolution as 

the other ISO cases, which leads to a longer run time. The 

timings for the Case #9 are also rather interesting, as the 

full model ran about twice as fast as the piecewise model. 

This is because the piecewise model contains all of the 

same geometry as the full model, but forces it to be 

processed one building at a time. On the other hand, the 

full model batches all the geometry together into one large 

render, which allows for a faster runtime overall. 

The results also show that errors in the pixel counting 

method are centered around 0. This is extremely 

important, as it means that our implementaion predicts the 

same total amount of radiation will enter the windows as 

EnergyPlus’s polygon clipping algorithm. Additionally, 

the tests consistantly show that increasing resolution does 

decrease the error, allowing a specific accuracty goal to 

be met. However, the tests also show that the accuracy is 

not just dependent on resolution, but also of the geometry 

being simulated. For example, the 0.01 error cutoff could 

be reached by the 40cm2 resolution for the urban model, 

but required a resolution of 4cm2 for Cases #1-#6 and a 
resolution of less than 0.1cm2 for Case #7. In general, a 

finer resolution is needed to capture finer details in the 

geometry. 

In modern architectural design culture, building 

performance simulations remain underutilized as 

“generative” design tools. Energy models tend to be 
especially underrepresented in the fast-paced early design 

phase. The importance of implementing evaluative tools 

during the early design phase, however, is self-evident 

given that decisions made at this point such as building 

proportions and their spatial interrelationship with the 

context, largely “make or break” the intrinsic energetic 

performance of a building. One reason for the lack of 

acceptance may be traced back to their slowness. The 

results presented in the previous section have shown that 

it is possible to significantly accelerate energy simulations 
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and therefore may facilitate a wider adoption of energy 

modeling software in the earliest stages of  architectural 

and urban design. Another, caveat of current energy 

modeling tools in the design environment is that they are 

often regarded as less sensitive to geometric changes. This 

perception is certainly related to the current geometric 

limitations that are imposed by the polygon clipping tools. 

The proposed pixel counting method in contrast can deal 
with complex high-polygon-count geometry, such as the 

cylinders in Case #7, in a more efficient manner and 

therefore allows designers to test complex geometries 

with ease. 

Another benefit that is energy and daylighting studies can 

be conducted more consistently. While daylight models 
often directly utilize the architectural CAD geometry for 

the analysis, energy model geometry must be abstracted. 

While this is still true for geometry that is partaking in 

heat transfer processes, the proposed method would allow 

modelers to keep architectural CAD geometry for shading 

devices and context. This significantly facilitates the 

model generation for complex facade shading geometry 

but also in urban design applications. 

Urban building energy modeling [UBEM] is a nascent 

field of research. Modelers that are interested in energy 

implications of cities with hundreds or thousands of 

building often rely on simplified models ranging from 

statistical methods to modeling archetypical buildings as 

dynamic BEMs and then extrapolating the results.  

Speed and robustness achieve by implementing pixel-

counting allows modelers to run multi zone building 

energy models within a feasible time. Simulations for the 

previously mention urban example included 121 

buildings and completed within 1218 seconds, whereas 

EnergyPlus could not handle the model without extreme 

preprocessing. 

Conclusion 

In this paper, we proposed a new pixel counting-based 

algorithm with transparency support and performed 

accuracy validations and speed tests on an 

implementation of the algorithm in C# using the 

widespread OpenGL 2.0 technology. The results of the 

tests show that pixel counting is a viable replacement for 

polygon clipping: our implementation can calculate PSSF 
values with error less than 0.01 in less than half the time 

of EnergyPlus’s polygon clipping implementation. 

Additionally, our implementation can handle very high 

detail shading devices composed of millions of polygons, 

as well as large urban models with relative ease. This is 

compared to EnergyPlus, which cannot at all handle such 

shading devices, and requires heavy preprocessing and 

simplification to be able to handle an urban scene. Finally, 

our algorithm, unlike Jones et al.’s, supports transparency, 

and thus has all of the features of EnergyPlus’s current 

polygon clipping shading algorithm, and thus can 

function as a drop-in replacement. As such, we highly 

recommend that our implementation be incorperated into 

the main EnergyPlus codebase, and that other systems 

needing a direct radiation shading algorithm prefer a pixel 

counting-based approach rather than a polygon clipping-

based approach. 

Acknowledgement 

The authors would like to thank the Cornell University 

David R. Atkinson Center for a Sustainable Future for 

funding this research as well as NVIDIA for supporting 

the project with a hardware grant. 

References 

Crawley, Drury B, Jon W Hand, Michaël Kummert, and 

Brent T Griffith. 2008. “Contrasting the 

Capabilities of Building Energy Performance 

Simulation Programs.” Building and 

Environment 43 (4): 661–673. 

Crawley, Drury B, Linda K Lawrie, Frederick C 

Winkelmann, Walter F Buhl, Y Joe Huang, 

Curtis O Pedersen, Richard K Strand, et al. 

2001. “EnergyPlus: Creating a New-Generation 

Building Energy Simulation Program.” Energy 
and Buildings 33 (4): 319–331. 

EnergyPlus Development Team. 2016. “EnergyPlus 

Engineering Reference: The Reference to 

EnergyPlus Calculations.” Lawrence Berkeley 

National Laboratory. 

Hiller, Marion D.E., William A. Beckman, and John W. 

Mitchell. 1996. “TRNSHD — a Program for 

Shading and Insolation Calculations.” 

University of Wisconsin-Madison. 

“ISO 13791:2012-03 Thermal Performance of Buildings 

- Calculation of Internal Temperatures of a 

Room in Summer without Mechanical Cooling 

- General Criteria and Validation Procedures.” 

2012. Beuth. 

Jones, Nathaniel L., Donald P. Greenberg, and Kevin B. 

Pratt. 2012. “Fast Computer Graphics 

Techniques for Calculating Direct Solar 

Radiation on Complex Building Surfaces.” 
Journal of Building Performance Simulation 5 

(5): 300–312. 

doi:10.1080/19401493.2011.582154. 

Klein, Sanford A. 1979. TRNSYS, a Transient System 

Simulation Program. Solar Energy Laborataory, 

University of Wisconsin–Madison. 

McCluney, R. 1990. “Awning Shading Algorithm 

Update.” ASHRAE Transactions 96 (1): 34–38. 

Olgyay, Aladar, Victor Olgyay, and others. 1976. Solar 

Control & Shading Devices. Princeton 

University Press. 

Yezioro, Abraham, and Edna Shaviv. 1994. “Shading: A 

Design Tool for Analyzing Mutual Shading 

between Buildings.” Solar Energy 52 (1): 27–

37. 

 


