
Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

975
https://doi.org/10.26868/25222708.2017.259

Speedup Potential of Climate-Based Daylight Modelling on GPUs 

 

Nathaniel L Jones and Christoph F Reinhart 

Massachusetts Institute of Technology, Cambridge, MA, USA 

 

 

 

 

 

 

Abstract 

Architects must consider an entire year's worth of 

solar positions and climate data to design buildings 

with adequate daylight and minimal glare. However, 

annual simulations are time-consuming and 

computationally expensive, which makes them 

difficult to integrate into iterative design processes. In 

this paper, we compare the performance of several 

RADIANCE-based dynamic daylighting simulation 

methods, DAYSIM and the three- and five-phase 

methods and, perhaps more importantly, the potential 

to speed them up using parallel implementations on 

graphic processors. Using a model of a generic office, 

we achieve speedups of ten times with DAYSIM and 

twenty-five times with the five-phase method. Parallel 

implementations of three- and five-phase methods 

provide better scaling to multi-GPU environments and 

more accurate results for complex fenestration 

systems than parallelized DAYSIM. 

Introduction 

Designing a naturally lit interior environment requires 

prediction and analysis of daylighting under all of sky 

conditions that occur in a building’s climate. Annual 

daylighting simulations predict luminance 

distributions in a space for all daytime hours and are 

typically used to calculate climate-based daylight 

metrics (CBDMs). However, annual daylight 

simulations are quite time consuming, and as a result, 

it is difficult to run them in the quantities needed to 

explore a wide variety of design options. Parallel 

computation promises to make the results of annual 

daylight simulations available quickly, which will be 

especially beneficial early in the design process. 

Making software programs run faster has long been an 

interest of the computer industry. In 1965, Gordon 

Moore put forth the idea now known as Moore’s law, 

that the density of transistors on new integrated circuit 

chips, and by extension their computing power, 

doubles at a constant rate (Moore, 1965). Reliable 

speed increases were a direct result of this doubling 

until 2004, when thermodynamic and economic 

pressures caused chip manufacturers to change their 

strategy; as transistors continued to shrink, chips grew 

to accommodate multiple cores instead of faster clock 

speeds (Sutter, 2005). In the next few years, chip 

manufacturers expect to reach the limits of transistor 

density, below which quantum effects will make 

transistors unreliable (Waldrop, 2016). In this post-

Moore era, continued software speedups need to come 

from parallelism and compiler optimization (Schardl, 

2016). Graphics processing units (GPUs) follow a 

single-instruction multiple-thread (SIMT) computing 

model that allows individual cores to be made very 

small and is thus highly effective for running code in 

parallel (NVIDIA, 2016). Introducing a second layer 

of parallelism, large data processing jobs may be 

partitioned and distributed among multiple GPUs 

(Navarro, et al., 2014). In computational physics, 

multi-GPU environments can yield significant 

speedups (Thibault & Senocak, 2009; Jia, et al., 2012; 

Yokota, et al., 2012). We use parallelism to speed up 

CBDM calculations on one and two GPUs. 

We have previously demonstrated parallelization of 

the ray-tracing kernel of DAYSIM at the primary ray 

level (Jones & Reinhart, 2015). While effective as a 

proof of concept, the solution did not scale well to 

large problems because of the memory requirements 

for storing a large number of daylight coefficient 

arrays on the GPU for parallel calculation. In this 

paper, we introduce an efficient way to parallelize 

annual daylighting simulations. We present a GPU-

based version of rcontrib, the ray-tracing program 

used in the three-phase method (Ward, et al., 2011) 

and five-phase method (McNeil, 2013). Because 

rcontrib has a much smaller memory footprint that its 

DAYSIM counterpart, rtrace_dc, it scales better to 

large collections of sensors. Furthermore, our parallel 

version maintains the ability to analyze complex 

fenestration systems that the three- and five-phase 

methods were developed for, which we were unable to 

do in DAYSIM. 

Background 

Parallelism in Daylighting Simulation 

In the building performance simulation community, 

daylighting simulation is typically performed using 

the RADIANCE suite of ray tracing software tools 

(Larson & Shakespeare, 1998). This suite includes the 

programs rtrace for point sensor simulation, rpict for 

image rendering (mimicking a high-dynamic range 

camera, which is an advanced sensor), rvu for model 

visualization, and rcontrib for dynamic daylight 

simulations. The related DAYSIM suite performs 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

976

annual daylighting calculations (Reinhart & 

Walkenhorst, 2001). While both sets of programs are 

accessible through command-line environments, a 

number of computer aided design tools and third-party 

plug-ins provide graphical interfaces to RADIANCE 

and DAYSIM. 

RADIANCE and DAYSIM use light-backward ray 

tracing, which traces rays from sensor locations 

through multiple-bounce paths until either reaching a 

light source or being extinguished (Whitted, 1980). 

When multiple sensors are considered, we can trace 

rays from each independently and in parallel. The 

exception occurs when using irradiance caching, 

which applies an ambient value calculated for one ray 

to other rays that terminate in its vicinity. Various 

solutions have been proposed to parallelize irradiance 

caching, with varying degrees of success (Křivánek & 

Gautron, 2009; Wang, et al., 2009; Frolov, et al., 2013; 

Jones & Reinhart, 2016a). 

Researchers have made a number of attempts to 

parallelize point-in-time RADIANCE simulations. 

RADIANCE itself allows limited parallelization by 

running multiple instances simultaneously with some 

sharing of data controlled by file locks. More 

sophisticated parallelization approaches using 

Message-Passing Interface (MPI) (Koholka, et al., 

1999; Debattista, et al., 2006) and wait-free 

synchronization (Dubla, et al., 2009) have not passed 

into common use. Zuo et al. (2014) implemented the 

matrix multiplication portion of the three-phase 

method in parallel on GPUs, achieving a speedup of 

800 times over previous methods for that step, but did 

not parallelize the ray tracing operations that account 

for most of the simulation time. In our own previous 

work on Accelerad, we have created GPU-accelerated 

parallel versions of rtrace and rpict (Jones & Reinhart, 

2014a), rtrace_dc (Jones & Reinhart, 2015), and rvu 

(Jones & Reinhart, 2016b) with documented speedups 

up to 44 times faster than RADIANCE (Jones & 

Reinhart, 2017). We now turn our attention to the final 

ray-tracing program, rcontrib, to determine whether 

its parallelization can result in easier access to 

daylighting metrics. 

Calculating Daylighting Metrics 

Daylighting describes the use of natural light to 

illuminate building interiors. The amount of daylight 

present in a building at any given time depends on the 

sun’s position and current weather conditions. 

Climate-based daylighting metrics (CBDMs) such as 

spatial daylight autonomy and annual sunlight 

exposure describe daylighting over a space’s annual 

occupied hours (IESNA, 2012). These metrics are now 

integrated into compliance paths for both the LEED 

(USGBC, 2013) and WELL (International WELL 

Building Institute, 2016) green building standards. 

Spatial daylight autonomy describes the fraction of 

occupied space that receives at least 300 lux for at least 

50% of occupied hours and is abbreviated sDA300,50%. 

Annual sunlight exposure is the fraction of occupied 

space that receives at least 1000 lux (and can therefore 

be assumed to be in direct sunlight) during at least 250 

occupied hours and is abbreviated ASE1000,250. 

Designers should attempt to maximize sDA300,50% and 

minimize ASE1000,250 to provide adequate natural 

illumination without overheating. 

If we assume that a typical office is occupied for eight 

hours each day, or 2920 hours per year, then a naïve 

approach to calculating CBDMs would be to run 2920 

point-in-time daylighting simulations over a grid of 

sensors with RADIANCE’s rtrace program, once for 

each hour. On each iteration, rtrace would trace rays 

from each sensor through the scene along multiple-

bounce paths until reaching the sun and sky and 

sampling the brightness of each. However, every 

simulation would trace the same ray paths and differ 

only by the brightness of the sky where the rays reach 

it. This approach results in considerable duplicated 

work and programmatic inefficiency. 

DAYSIM and the three- and five-phase methods all 

avoid duplicating work by using the ray-tracing step 

to calculate matrix entries. The matrix (or product of 

matrices) is a transformation function between source 

radiance and sensor irradiance values. When 

multiplied by a vector containing a given sky 

condition, it produces an array of sensor values. 

Although the details of the methods differ, as we will 

describe later, both DAYSIM’s rtrace_dc and the 

three- and five-phase methods’ rcontrib are simple 

modifications of the original rtrace algorithm. 

Validation 

A significant number of quantitative studies support 

RADIANCE as an accurate simulation tool for daylit 

buildings. In one study, rtrace produced the most 

accurate results out of four validated rendering 

packages when compared to field measurements of a 

daylit interior, although still off by up to 40% 

(Ubbelohde & Humann, 1998). In a study of daylight 

control options, all rtrace relative errors were under 

20% (Ng, et al., 2001).  Because our CBDM 

calculation methods derive from rtrace, we expect 

similar performance from them. 

This expectation is borne out through a number of 

studies of DAYSIM. Several studies comparing daylit 

interiors to DAYSIM predictions found relative mean 

bias error (MBErel) under 20% and relative root mean 

square error (RMSErel) under 32% (Reinhart & 

Walkenhorst, 2001; Reinhart & Andersen, 2006). 

DAYSIM gave comparable results to 3ds Max in a 

study of one building interior under a number of sky 

conditions (Reinhart & Breton, 2009) but offered 

superior results at four other geographic locations 

(Bellia, et al., 2015). 

Validation of the three- and five-phase methods shows 

similar accuracy. The three-phase method produced 

close agreement with theoretical flux values for 

venetian blinds (Ward, et al., 2011) and had MBErel 

less than 13% and RMSErel less than 23% for a light-

redirecting component (McNeil & Lee, 2013). In a 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

977

study of four classrooms, the three- and five-phase 

methods gave similar sDA300,50% results to each other 

and to DAYSIM, although more variance occurred in 

ASE1000,250 (Brembilla, 2016). Images created with the 

three- and five-phase methods had similar appearance 

to conventional RADIANCE rpict images and produced 

similar image-based predictions of daylight glare 

probability (Inanici & Hashemloo, 2017). 

Implementation 

DAYSIM 

In DAYSIM, the matrix entries are daylight 

coefficients. Each daylight coefficient represents the 

contribution of a light source to a sensor, such that the 

total illuminance at that point is the sum of all direct 

and diffuse daylight coefficients multiplied by the 

respective luminance values of their sources at a 

particular point in time (Tregenza & Waters, 1983). 

DAYSIM calculates direct and diffuse daylight 

coefficients separately (with rtrace_dc), creating two 

matrices and then concatenating them (with gen_dc). 

For the diffuse matrix Ddif, DAYSIM uses 148 sources 

corresponding to the 145 Tregenza sky divisions 

(Tregenza, 1987) and three ring-shaped ground 

patches. For the direct matrix Ddir, DAYSIM creates 

directional sources spaced uniformly along the solar 

paths of the chosen latitude (Reinhart & Walkenhorst, 

2001). The number of direct daylight coefficients 

varies by latitude; 63 are needed at the authors’ 

location. The final step (carried out by ds_illum) is to 

calculate the irradiance matrix I listing the irradiance 

at each sensor for each time of the year as follows: 

 
𝐼 = 𝐷𝑑𝑖𝑟𝑆𝑠𝑢𝑛 + 𝐷𝑑𝑖𝑓𝑆𝑠𝑘𝑦

= (𝐷𝑑𝑖𝑟|𝐷𝑑𝑖𝑓)(𝑆𝑠𝑢𝑛|𝑆𝑠𝑘𝑦) 
(1) 

where the matrices Ssun and Ssky list the radiance of 

each sun position and sky patch, respectively, at each 

hour of the year. In practice, the values reported from 

DAYSIM have units of illuminance (lux) rather than 

irradiance (W/m2), which is achieved by multiplying I 

by 179 lm/W (Inanici, et al., 2015). 

Three- and Five-Phase Methods 

The three-phase method may be understood as an 

evolution from DAYSIM. It differs in two key ways. 

First, the brightness of the sun is added to the sky 

dome to create a single sky matrix S (calculated by 

gendaymtx). This eliminates the need for separate 

direct and diffuse ray tracing passes but also removes 

hard shadows. Second, the daylight coefficient matrix 

is replaced with a product of three matrices (calculated 

by rcontrib). These are the daylight matrix D, relating 

light that reaches windows to its sources in the sky, the 

transmission matrix T, which is a bidirectional 

scattering distribution function (BSDF) that describes 

light passing through a window or complex 

fenestration system in terms of light incident on that 

surface, and the view matrix V, relating light leaving a 

window to the light arriving at sensors. The entries in 

each matrix are no longer daylight coefficients, since 

they do not describe the complete source-to-sensor 

relationship, so instead we call them contribution 

coefficients. The irradiance matrix is calculated (by 

dctimestep) as: 

 𝐼 = 𝑉𝑇𝐷𝑆 (2) 

Unlike rtrace_dc, rcontrib performs separate 

calculations in the red, green, and blue channels and 

interleaves them in the matrices. We convert the 

results to illuminance as follows: 

  𝐿 = 179 × (0.2651𝑟 + 0.670𝑔 + 0.065𝑏)  (3) 

where L is illuminance in lux and r, g, and b are the 

red, green, and blue irradiance values in W/m2 

(Inanici, et al., 2015). 

The five-phase method extends the three-phase 

method by separating the direct irradiance calculation. 

This makes it possible to render hard shadows and 

otherwise brings the method in line with the standard 

daylight coefficient model proposed by Bourgeois, et 

al. (2008). After running a normal three-phase method 

simulation, the next step is to isolate and remove the 

direct contribution from the previously calculated 

result. This means repeating the calculation of D and 

V with no light bounces (using a non-reflective, black 

version of the model) to determine how much light 

must be removed. These direct-only matrices Dd and 

Vd, are used together with a direct sun-only sky matrix 

Sds. Finally, the direct sun component is added back in 

using a fine grid of suns centered in Reinhart sky 

patches, which are subdivisions of Tregenza sky 

patches (Bourgeois, et al., 2008). The use of the 

Reinhart sky patches stored in Ssun allows simulation 

results to be reused for multiple building orientations 

or geographic locations, although this flexibility is 

more useful in academic study than in practice. The 

calculation again uses a non-reflective, black model, 

with the exception of windows, which retain their 

transparency, and the calculation produces actual 

daylight coefficients in Cds instead of contribution 

coefficients because BSDFs are not relevant to direct 

ray paths. The entire five-phase method is then: 

 𝐼 = 𝑉𝑇𝐷𝑆 − 𝑉𝑑𝑇𝐷𝑑𝑆𝑑𝑠 + 𝐶𝑑𝑠𝑆𝑠𝑢𝑛 (4) 

Ray Payloads 

Before we describe our modifications to parallelize 

rcontrib for the GPU, it is useful to cover some core 

concepts of ray tracing. Each ray contains both 

geometric information (origin and direction) and a 

payload. Usually, the payload is a color or radiance 

value that is calculated when the ray intersects a 

surface. Unless the surface emits its own light, this 

calculation generally requires tracing new reflected 

rays. After tracing the entire tree of rays, the payload 

returned by the primary ray at the tree’s root becomes 

the value of its associated sensor or pixel. 

Both DAYSIM’s rtrace_dc and RADIANCE’s rcontrib 

augment the ray payload. The former includes an array 

of 148 daylight coefficients in the payload for each 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

978

ray, which internal calculations treat like color 

channels. This array fills 592 bytes, easily eclipsing 

the rest of the ray’s data in size, and this substantially 

increases the memory use of rtrace_dc when 

computing many rays in parallel. In contrast, rcontrib 

adds three double-precision ray coefficients to the ray 

payload, one each for the red, green, and blue 

channels. The cost per ray for the additional payload 

is only 24 bytes. Rather than accumulating value, as a 

color or daylight coefficient payload would, ray 

coefficients represent the weighting factor of each 

color channel in calculating that channel’s value for 

the parent ray. When a ray hits a surface or source with 

a material of interest specified by the user (usually a 

light source), rcontrib adds the cumulative product of 

the ray coefficients in the current tree to a contribution 

coefficient for that material. At the conclusion of ray 

tracing, the program outputs the coefficients rather 

than the radiance values. Any lighting condition 

produced by a set of sources (or sky patches) is a linear 

combination of the contribution coefficients. 

Because rcontrib calculates coefficients at leaf nodes 

of the ray tree rather than at the root, as DAYSIM 

does, it is incompatible with irradiance caching. 

However, irradiance caching artificially increases the 

sampling importance of diffuse rays far from the root. 

Without it, the minimum ray weight would need to be 

set extremely low to simulate diffuse lighting 

accurately, which would severely increase simulation 

times. To avoid this, the three- and five-phase methods 

advise the use of Russian roulette to terminate ray 

tracing; ray paths terminate at random beyond a 

certain depth in the tree, and the remaining rays 

receive accordingly higher weights (Pharr & 

Humphreys, 2010). The rcontrib program enables 

Russian roulette by default. 

Our Modifications 

We make two changes to the rcontrib process in order 

to parallelize it for the GPU. First, our ray coefficients 

store weights relative to the primary ray instead of the 

immediate parent ray. This prevents the program from 

having to access pointers to many rays in each ray 

intersection calculation, which puts less strain on the 

limited number of registers available to each GPU 

thread and avoids spills into global memory. In our 

analysis, we tested the effect of storing single-

precision ray coefficients, which may be computed 

faster on GPUs, versus double-precision ray 

coefficients, which are more resistant to numerical 

error propagation. 

Second, we store one set of contribution coefficients 

per root ray in global GPU memory. We assign each 

working thread on the GPU its own array of m 

contribution coefficients (one per material or per sky 

patch) in global memory that it populates 

independently of the other GPU threads. For a model 

with n sensors, the memory size is n × z bytes, where 

the depth of bytes per sensor is: 

 𝑧 = 𝐶𝐶 × 𝑚 (5) 

where CC is the size of a contribution coefficient RGB 

triplet in bytes. The array must reside in global 

memory because of its size, but it is accessed 

infrequently and therefore does not slow program 

execution significantly. We contrast this to DAYSIM, 

which reads and writes to the daylight coefficient 

array at every ray intersection. 

Results 

In order to compare the performance and speedup 

potential through GPU parallelism of DAYSIM with 

those of the three- and five-phase methods, we 

performed annual daylight analysis on a set of four 

models with all three methods. The first models used 

were small, medium, and large versions of the south-

facing reference office (Reinhart, et al., 2013). The 

office interior measures 3.6 by 8.2 meters and contains 

a grid of 1425 irradiance sensors at 0.15-meter spacing 

located one meter above the floor (Figure 1). The 

small version of the model consisted of a single 

reference office at the authors’ latitude, while the 

medium and large models consisted of two and ten 

side-by-side copies of the office yielding 2850 and 

14250 sensors, respectively. We define model size in 

terms of the number of sensors involved in the analysis 

because this quantity directly affects simulation time. 

The modularity of our models also forces DAYSIM’s 

irradiance cache to grow proportionally with model 

size rather than treating it as a separate variable. The 

fourth model was the same as the first with the 

addition of exterior blinds. 
 

 

Figure 1: The reference office, shown in perspective 

and plan views, contains six workstations with a 

south-facing window (Reinhart, et al., 2013). 
 

We chose simulation settings recommended by other 

sources. Because DAYSIM’s irradiance caching and 

the three- and five-phase methods’ Russian roulette 

are fundamentally different approaches for diffuse 

calculations, each recommends different settings. We 

ran DAYSIM using the high-accuracy settings 

recommended by DIVA-for-Rhino (Jakubiec & 

Reinhart, 2011) version 4 with some modifications 

specific to the size of our model. We ran the three- and 

five-phase methods with the settings recommended by 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

979

Andrew McNeil (2010; 2013). The GPU-based 

versions used the same settings as their serial 

counterparts, except for the addition of the –ac 

parameter to control irradiance cache size (Jones & 

Reinhart, 2014b). Although the default size 4096 

sufficed for the small and medium models, a 

proportionately larger value was necessary for the 

large model. Table 1 lists the settings we used. 
 

Table 1: Default simulation parameters 
 

Parameter DAYSIM 3-/5-PM 

Ambient accuracy (–aa) 0.05 0 

Ambient bounces (–ab) 8 8 

Ambient divisions (–ad) 4096 50000 

Ambient resolution (–ar) 300 256 

Ambient super-samples (–as) 20 0 

Direct jitter (–dj) 0 0.9 

Direct relays (–dr) 2 3 

Direct sampling (–ds) 0.2 0.2 

Max. ray reflections (–lr) 6 -10 

Minimum ray weight (–lw) 0.001 0.00002 

Specular sampling (–ss) 1 1 

Specular threshold (–st) 0.15 0.15 

Irradiance cache size (–ac) 

GPU only 

4096/16384 N/A 

 

The code used in all of our simulations was based on 

RADIANCE release 5.0.a.12 and compiled for 

Windows. This allowed a fairer comparison between 

methods, but it required a custom compilation of 

DAYSIM since the publicly available version at the 

time of writing was based on an older RADIANCE 

release. To create the parallel versions of both 

programs, we replaced RADIANCE’s own ray tracing 

code with calls to the OptiX™ GPU ray tracing library 

from NVIDIA® (Parker, et al., 2010), similar to our 

method for creating other Accelerad programs.  

We ran simulations on two machines. The serial 

implementations ran on a workstation with a 2.60 GHz 

Intel® Xeon® E5-2604 processor. The parallel 

implementations ran on a workstation with a 2.27 GHz 

Intel® Xeon® E5520 processor and two NVIDIA® 

Tesla® K40 graphics accelerators with 2880 CUDA® 

cores each. Using the slower workstation for the 

parallel simulations was necessary because the faster 

workstation lacked sufficient power supply for the 

graphics accelerator cards we used. 

Daylight Metrics 

The six simulation methods generally produced 

similar results for sDA300,50% and ASE1000,250 in the 

four models (Figure 2). For the small, medium, and 

large reference office models, which should yield 

identical CBDM results, all simulations predicted 

sDA300,50% within half a percent of 50%, with the 

exception of the parallel DAYSIM simulation. This is 

consistent with earlier observations in which 

parallelized rtrace_dc tended to predict lower 

sDA300,50% than the serial version (Jones & Reinhart, 

2015). The discrepancy grows with model size. 

 

 

Figure 2: Spatial daylight autonomy (sDA300,50%) and 

annual sunlight exposure (ASE1000,250) for the models. 
 

For the model with blinds, slightly more variation 

existed between the simulation results. Serial 

DAYSIM predicted an sDA300,50% of 26%, while the 

three- and five-phase methods predicted 24% and 25% 

respectively. These discrepancies are well within our 

error tolerance. However, the parallel DAYSIM 

implementation gave poor results. While the 

simulation did predict some light entering the room, 

the fixed size irradiance cache did not register enough 

diffuse light entering the space to meet the 300-lux 

threshold at any sensor. 

We saw similar results for ASE1000,250. The parallel 

DAYSIM results again diverged from the other 

simulation methods, which predicted an ASE1000,250 of 

45% for the unshaded models. A significant 

discrepancy arose between the five-phase method and 

the other simulation methods for the model with 

blinds. The serial DAYSIM simulation and both three-

phase method simulations yielded similar ASE1000,250 

predictions around 20%, while the five-phase method 

gave a lower prediction of 12%. The lower value 

occurred because the five-phase method’s direct sun-

only term did not account for interreflection within the 

blinds and was therefore much smaller than the 

subtracted direct-only component that incorporated 

the blinds’ BSDF. 

Figure 3 shows example results from each of the six 

simulations. The illuminance snapshots show lighting 

conditions under a single sky condition. The relatively 

small number of sun positions considered by 

DAYSIM results in several shadows cast by the 

0%

10%

20%

30%

40%

50%

60%

Small Medium Large Blinds

sD
A

3
0
0

,5
0
%

0%

10%

20%

30%

40%

50%

Small Medium Large Blinds

A
S

E
1

0
0

0
,2

5
0

DAYSIM CPU DAYSIM GPU
3-phase CPU 3-phase GPU
5-phase CPU 5-phase GPU



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

980

window. The three-phase method did not produce 

well-defined shadows and instead gave the pattern of 

light entering through the window a smudged 

appearance. The five-phase method considers a large 

number of sun positions, so it was able to produce a 

single, hard-edged shadow. The parallel three- and 

five-phase simulations produced lower maximum 

brightness values than their respective serial versions, 

but as the maximum values were significantly higher 

than 1000 lux, these differences were not apparent in 

either sDA300,50% or ASE1000,250 results. 

Speedup 

We ran each simulation in serial on the Intel® Xeon® 

E5-2604 workstation and in parallel on one and two 

Tesla® K40 accelerators. Our concern here lies with 

the time taken to run rtrace_dc or rcontrib in each 

case. Although the matrix algebra performed by 

ds_illum and dctimestep also added to the total 

simulation time, its contribution was relatively minor 

and in any case was unchanged by parallelizing the 

ray-tracing portion of the simulation. For each 

simulation type, we report the mean runtime from 

  DAYSIM 3-phase 5-phase 

  CPU GPU CPU GPU CPU GPU 
R

ef
er

en
ce

 o
ff

ic
e 

Il
lu

m
in

a
n

ce
 s

n
a
p

sh
o

t 

      

D
a

yl
ig

h
t 

a
u

to
n

o
m

y 

      

R
ef

er
en

ce
 o

ff
ic

e 
w

it
h

 b
li

n
d

s 

Il
lu

m
in

a
n

ce
 s

n
a
p

sh
o

t 

      

D
a

yl
ig

h
t 

a
u

to
n

o
m

y 

      

 

 0 20,000 lux 

Figure 3: Simulation results of the reference office without and with blinds. Illuminance snapshots show lighting 

conditions at 2pm on January 1st. Daylight autonomy images show regions that achieve the IESNA standard 

LM-83 target of 300 lux for at least 50% of occupied hours in white. 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

981

eight simulations. Table 2 breaks down the time taken 

to compute each matrix in each test, and Figure 4 and 

Figure 5 illustrate times for the small and large 

models, respectively. 

In all cases, the three-phase method offered a speed 

advantage over DAYSIM, whether in parallel or not. 

This may come as a surprise given the higher-accuracy 

parameters recommended for the three-phase method 

and may indicate that Russian roulette offers more 

efficiency than irradiance caching in calculating 

diffuse lighting. 

Calculation times for the daylight matrices D and Dd 

show little variance. All of the models we tested had 

identical views to the sky from each window, so 

calculation times did not vary with model size. The 

GPU calculation times can be reduced for these 

matrices by storing the contribution coefficients with 

single precision instead of double precision. The 

calculation was also faster using a single GPU rather 

than both together. These facts indicate that loading 

programs and copying memory to and from the GPUs 

took up more time than the calculations themselves. 

Indeed, calculation of Dd was fast enough on the CPU 

that parallelism had no benefit at all.  

Calculation times for the view matrices V and Vd and 

the direct sun matrix Cds did benefit from parallelism. 

This was particularly true for V, which involved a 

large number of ray bounces, and Cds, which cast a 

large number of shadow rays because of the number 

of sun positions. For the smaller models, calculations 

ran faster on a single GPU than when using both 

(Figure 4). The smaller models had only 1425 and 

2850 sensors, not enough to justify the use of a second 

GPU. (Each GPU had 2880 cores, though we cannot 

assume a one-to-one assignment of sensor to core by 

the graphics driver.) In contrast, the large model had 

enough sensors that splitting work between GPUs did 

result in faster simulations (Figure 5). 

Table 2: Matrix calculation times by rtrace_dc and rcontrib in minutes. 
 

Model Processor 
DAYSIM 3-/5-phase 5-phase 

Ddir Ddif D T V Dd Vd Cds 

Small 

CPU 39.2 22.9 1.6 0.1 10.3 0.0 2.1 600.3 

1x GPU 8.8 3.9 0.2 0.1 2.3 0.1 0.5 21.1 

2x GPU 5.6 2.8 0.7 0.2 3.3 0.6 0.7 45.2 

Medium 

CPU 78.0 45.5 1.6 0.1 20.9 0.0 4.1 1219.7 

1x GPU 12.0 6.3 0.2 0.1 6.2 0.1 1.2 85.6 

2x GPU 7.8 4.2 0.7 0.2 6.2 0.6 1.3 73.2 

Large 

CPU 331.5 177.8 1.7 0.1 111.2 0.0 22.6 6031.0 

1x GPU 142.4 117.0 0.2 0.1 32.5 0.2 5.8 374.9 

2x GPU 84.6 68.2 0.7 0.2 21.3 0.6 4.4 323.9 

Blinds 

CPU 96.1 42.9 1.6 21.8 10.1 0.0 2.1 623.5 

1x GPU 9.1 4.1 0.2 0.8 2.3 0.1 0.5 21.6 

2x GPU 5.8 2.9 0.7 0.7 3.2 0.6 0.7 47.8 

 

 

Figure 4: Cumulative matrix calculation times by 

rtrace_dc and rcontrib for the small model. 

 

 

Figure 5: Cumulative matrix calculation times by 

rtrace_dc and rcontrib for the large model. 

 

0

10

20

30

40

50

60

T
im

e 
(m

in
u

te
s)

Ddir Ddif D T V Dd Vd Cds

614.3

0

100

200

300

400

500

T
im

e 
(m

in
u

te
s)

Ddir Ddif D T V Dd Vd Cds

6166.7



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

982

Calculation times for the transmission matrix T benefit 

from parallelism, but only for complex fenestration 

systems. In the model with blinds, the BSDF 

calculation ran twenty-six times faster on a single 

GPU and thirty-one times faster on both GPUs. In the 

models without shading devices, there was no 

advantage to using the GPU. The timings reported in 

Table 2 do not include the run times of genBSDF and 

rfluxmtx, which wrap the rcontrib BSDF calculation, 

but the overhead of those programs is minimal. 

Figure 6 summarizes the speedup factor achieved by 

each test. The best improvement was a twenty-five-

fold speedup on the small model with the five-phase 

method. More noteworthy, however, are the trends 

that emerged in scalability with model size. Parallel 

DAYSIM performed well for small models, but the 

speedup factor decreased for larger models. This is 

mainly due to the necessity of using a larger irradiance 

cache with larger models. On the other hand, the three- 

and five-phase methods did not show lessening 

speedups between the medium and large models, and 

in fact showed improvement when using multiple 

GPUs.  
 

 

Figure 6: Speedup factors for each method using one 

or two Tesla K40 accelerators. DAYSIM speedups 

for the blinds model are not shown because the 

results are not useable. 

Conclusions 

This study demonstrates the potential of GPU 

computation to speed up CBDM simulations. We 

tested three simulation methods, DAYSIM and the 

three- and five-phase methods, in serial and parallel. 

The parallel version of rcontrib used by the three- and 

five-phase methods produced more reliable results 

than the parallel version of rtrace_dc used by 

DAYSIM, and its speedup scaled better with model 

size. 

Ultimately, the choice of what method to use to 

calculate CBDMs depends on the situation. For small 

models without complex fenestration systems, all of 

the methods will produce useful results. Designers 

seeking only CBDMs and not images should use the 

three-phase method to get the fastest results, which 

can be available within minutes using parallelism on a 

single GPU. Where the definition of accurate hard 

shadows is important, designers should use the five-

phase method, but parallel calculation may be 

necessary in order to keep the simulation time 

competitive with other methods. 

For large models with thousands of sensors or more, 

multi-GPU environments provide better scaling and 

improved speedup. However, DAYSIM does not scale 

as well to multi-GPU environments, mainly because 

of its reliance on irradiance caching. Similarly, 

DAYSIM is not a reliable platform for analysing 

complex fenestration systems, especially in parallel. 

Designers should therefore use the GPU-based three- 

and five-phase methods when working with large 

models. 

Given our increased reliance on CBDMs for building 

assessment and rating systems, we expect typical 

model sizes and complexities to increase in the future. 

This necessitates faster simulation tools to meet the 

need for more frequent and more complex 

simulations. We can no longer rely on Moore’s law to 

make serial simulations faster; instead, new 

generations of parallel computer architectures provide 

the best hope to meet simulation needs. Our research 

points out the need for computer hardware with 

increased core counts and reduced memory transfer 

overhead. Putting these efficiencies to use will allow 

architects and lighting designers to calculate CBDMs 

earlier and more frequently in the design process, 

leading to better daylighting performance in buildings. 

Acknowledgement 

The Tesla K40 accelerators used for this research were 

donated by the NVIDIA Corporation. The authors 

thank Eleonora Brembilla for her contributions to 

validating the three- and five-phase methods. 

References 

Bellia, L., Pedace, A. & Fragliasso, F., 2015. The 

impact of the software's choice on dynamic 

daylight simulations' results: A comparison 

between Daysim and 3ds Max Design®. Solar 

Energy, Volume 122, pp. 249-263. 

Bourgeois, D., Reinhart, C. & Ward, G., 2008. 

Standard daylight coefficient model for dynamic 

daylighting simulations. Building Research & 

Information, 36(1), pp. 68-82. 

Brembilla, E., 2016. Applicability of climate-based 

daylight modelling. In: Young Lighter of the Year 

Competition 2016. Society of Light and Lighting, 

UK: https://dspace.lboro.ac.uk/2134/23273. 

Debattista, K., Santos, L. P. & Chalmers, A., 2006. 

Accelerating the irradiance cache through parallel 

component-based rendering. Proceedings of the 

6th Eurographics conference on Parallel 

Graphics and Visualization, pp. 27-35. 

0

5

10

15

20

25

Small Medium Large Blinds

S
p

ee
d

u
p

DAYSIM 1 GPU DAYSIM 2 GPU

3-phase 1 GPU 3-phase 2 GPU

5-phase 1 GPU 5-phase 2 GPU



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

983

Dubla, P., Debattista, K., Santos, L. P. & Chalmers, 

A., 2009. Wait-free shared-memory irradiance 

cache. Proceedings of the 9th Eurographics 

Symposium on Parallel Graphics and 

Visualization, pp. 57-64. 

Frolov, V., Vostryakov, K., Kharlamov, A. & 

Galaktionov, V., 2013. Implementing irradiance 

cache in a GPU photorealistic renderer. In: M. L. 

Gavrilova, C. K. Tan & A. Konushin, eds. 

Transactions on Computational Science XIX. 

Berlin: Springer, pp. 17-32. 

IESNA Daylighting Metrics Committee, 2012. 

Lighitng Measurement #83, Spatial Daylight 

Autonomy (sDA) and Annual Sunlight Exposure 

(ASE), New York: IESNA Lighting 

Measurement. 

Inanici, M., Brennan, M. & Clark, E., 2015. Spectral 

daylighting simulations: Computing circadian 

light. Proceedings of BS2015: 14th Conference of 

International Building Performance Simulation 

Association, Hyderabad, India, Dec. 7-9, 2015, 

pp. 1245-1252. 

Inanici, M. & Hashemloo, A., 2017. An investigation 

of the daylighting simulation techniques and sky 

modeling practices for occupant centric 

evaluations. Building and Environment, Volume 

113, pp. 220-231. 

International WELL Building Institute, 2016. The 

WELL Building Standard® v1, New York: Delos 

Living LLC. 

Jakubiec, J. A. & Reinhart, C. F., 2011. DIVA 2.0: 

Integrating daylight and thermal simulations 

using Rhinoceros 3D and EnergyPlus. 

Proceedings of Building Simulation 2011: 12th 

Conference of International Building 

Performance Simulation Association, Sydney, 14-

16 November, pp. 2202-2209. 

Jia, Y., Luszczek, P. & Dongarra, J., 2012. Multi-GPU 

implementation of LU factorization. Procedia 

Computer Science, Volume 9, pp. 106-115. 

Jones, N. L. & Reinhart, C. F., 2014a. Physically 

based global illumination calculation using 

graphics hardware. Proceedings of eSim 2014: 

The Canadian Conference on Building 

Simulation, pp. 474-487. 

Jones, N. L. & Reinhart, C. F., 2014b. Irradiance 

caching for global illumination calculation on 

graphics hardware. 2014 ASHRAE/IBPSA-USA 

Building Simulation Conference, Atlanta, GA, 

September 10-12, pp. 111-120. 

Jones, N. L. & Reinhart, C. F., 2015. Fast daylight 

coefficient calculation using graphics hardware. 

Proceedings of BS2015: 14th International 

Conference of the International Building 

Performance Simulation Association, 

Hyderabad, India, Dec. 7-9, 2015, pp. 1237-

1244. 

Jones, N. L. & Reinhart, C. F., 2016a. Parallel 

multiple-bounce irradiance caching. Computer 

Graphics Forum, 35(4), pp. 57-66. 

Jones, N. L. & Reinhart, C. F., 2016b. Real-Time 

Visual Comfort Feedback for Architectural 

Design. PLEA 2016 Los Angeles – 32nd 

International Conference on Passive and Low 

Energy Architecture, pp. 659-664. 

Jones, N. L. & Reinhart, C. F., 2017. Experimental 

validation of ray tracing as a means of image-

based visual discomfort prediction. Building and 

Environment, Volume 113, pp. 131-150. 

Koholka, R., Mayer, H. & Goller, A., 1999. MPI-

parallelized Radiance on SGI CoW and SMP. 

Proceedings of the 4th International ACPC 

Conference Including Special Tracks on Parallel 

Numerics and Parallel Computing in Image 

Processing, Video Processing, and Multimedia: 

Parallel Computation, pp. 549-558. 

Křivánek, J. & Gautron, P., 2009. Practical global 

illumination with irradiance caching. Synthesis 

Lectures on Computer Graphics and Animation, 

4(1), pp. 1-148. 

Larson, G. W. & Shakespeare, R., 1998. Rendering 

with Radiance: The Art and Science of Lighting 

Visualization. San Francisco: Morgan Kaufmann 

Publishers, Inc. 

McNeil, A., 2010. The Three-Phase Method for 

Simulating Complex Fenestration with Radiance. 

McNeil, A., 2013. The Five-Phase Method for 

Simulating Complex Fenestration with Radiance. 

McNeil, A. & Lee, E., 2013. A validation of the 

Radiance three-phase simulation method for 

modelling annual daylight performance of 

optically complex fenestration systems. Journal 

of Building Performance Simulation, 6(1), pp. 24-

37. 

Moore, G. E., 1965. Cramming more components onto 

integrated circuits. Electronics, 38(8), pp. 114-

117. 

Navarro, C. A., Hitschfeld-Kahler, N. & Mateu, L., 

2014. A survey on parallel computing and its 

applications in data-parallel problems using GPU 

architectures. Communications in Computational 

Physics, 15(2), pp. 285-329. 

Ng, E. Y.-Y., Poh, L. K., Wei, W. & Nagakura, T., 

2001. Advanced lighting simulation in 

architectural design in the tropics. Automation in 

Construction, 10(3), pp. 365-379. 

NVIDIA, 2016. CUDA C Programming Guide, PG-

02829-001_v8.0, September 2016. 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

984

Parker, S. G. et al., 2010. OptiX: A general purpose 

ray tracing engine. ACM Transactions on 

Graphics – Proceedings of ACM SIGGRAPH 

2010, 29(4). 

Pharr, M. & Humphreys, G., 2010. Physically Based 

Rendering: From Theory to Implementation. 2nd 

Edition ed. Burlington: Morgan Kaufmann. 

Reinhart, C. & Breton, P.-F., 2009. Experimental 

validation of Autodesk® 3ds Max® Design 2009 

and Daysim 3.0. LEUKOS: The Journal of the 

Illuminating Engineering Society of North 

America, 6(1), pp. 7-35. 

Reinhart, C. F. & Andersen, M., 2006. Development 

and validation of a radiance model for a 

translucent panel. Energy and Buildings, 38(7), 

pp. 890-904. 

Reinhart, C. F., Jakubiec, J. A. & Ibarra, D., 2013. 

Definition of a reference office for standardized 

evaluations of dynamic façade and lighting 

technologies. Proceedings of BS2013: 13th 

Conference of International Building 

Performance Simulation Association, Chambéry, 

France, August 26-28, pp. 3645-3652. 

Reinhart, C. F. & Walkenhorst, O., 2001. Validation 

of dynamic RADIANCE-based daylight 

simulations for a test office with external blinds. 

Energy and Buildings, Volume 33, pp. 683-697. 

Schardl, T. B., 2016. Performance engineering of 

multicore software: Developing a science of fast 

code for the post-Moore era, PhD thesis: 

Massachusetts Institute of Technology. 

Sutter, H., 2005. A fundamental turn toward 

concurrency in software. Dr. Dobb's Journal, 

30(3), pp. 16-22. 

Thibault, J. & Senocak, I., 2009. CUDA 

implementation of a Navier-Stokes solver on 

multi-GPU desktop platforms for incompressible 

flows. 47th AIAA Aerospace Sciences Meeting 

Including The New Horizons Forum and 

Aerospace Exposition, 5 – 8 January 2009, 

Orlando, Florida, pp. 1-15. 

Tregenza, P., 1987. Subdivision of the sky hemisphere 

for luminance measurements. Lighting Research 

and Technology, Volume 19, pp. 13-14. 

Tregenza, P. & Waters, I., 1983. Daylight coefficients. 

Lighting Research and Technology, 15(2), pp. 65-

71. 

Ubbelohde, M. S. & Humann, C., 1998. Comparative 

evaluation of four daylighting software programs. 

In: 1998 ACEEE Summer Study on Energy 

Efficiency in Buildings, Pacific Grove, CA (US), 

08/23/1998–08/28/1998. Washington: American 

Council for an Energy-Efficient Economy, pp. 

3.325-3.340. 

US Green Building Council (USGBC), 2013. LEED 

Reference Guide for Building Design and 

Construction, LEED V4, Washington DC: 

USGBC. 

Waldrop, M. M., 2016. The chips are down for 

Moore’s law. Nature News, Volume 530, pp. 144-

147. 

Wang, R., Zhou, K., Pan, M. & Bao, H., 2009. An 

efficient GPU-based approach for interactive 

global illumination. ACM Transactions on 

Graphics – Proceedings of ACM SIGGRAPH 

2009, 28(3). 

Ward, G. et al., 2011. Simulating the daylight 

performance of complex fenestration systems 

using bidirectional scattering distribution 

functions within Radiance. LEUKOS: The 

Journal of the Illuminating Engineering Society 

of North America, 7(4), pp. 241-261. 

Whitted, T., 1980. An improved illumination model 

for shaded display. Communications of the ACM, 

23(6), pp. 343-349. 

Yokota, R., Barba, L., Narumi, T. & Yasuoka, K., 

2012. Scaling fast multipole methods up to 4000 

GPUs. Proceedings of the ATIP/A*CRC 

Workshop on Accelerator Technologies for High-

Performance Computing: Does Asia Lead the 

Way?, pp. 9:1-9:6. 

Zuo, W., McNeil, A., Wetter, M. & Lee, E. S., 2014. 

Acceleration of the matrix multiplication of 

Radiance three phase daylighting simulations 

with parallel computing on heterogeneous 

hardware of personal computer. Journal of 

Building Performance Simulation, 7(2), pp. 152-

163. 

 


