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Abstract

State-of-the-art building simulation control methods
incorporate physical constraints into their mathemat-
ical models, but omit implicit constraints associated
with policies of operation and dependency relation-
ships among rules representing those constraints. To
overcome these shortcomings, there is a recent trend
in enabling the control strategies with semantically-
enabled rule checking capabilities. One solution is to
exploit Semantic Web technologies in building sim-
ulation control. Such approaches provide the tools
for semantic modeling of domains, and the abil-
ity to deduce new information based on the models
through use of Description Logic (DL) implemented
by inference-based rules. In a step toward enabling
this capability, this paper presents a semantically-
enabled control strategy for building energy man-
agement simulations that integrate semantic mod-
eling and formal rule checking mechanisms into a
Model Predictive Control (MPC) formulation. The
approach addresses the high sensitivity of MPC to
the selection of initial conditions by deriving the ini-
tial conditions from inference-based rules.

Introduction

Problem Statement. According to a 2003
survey on commercial building energy consump-
tion, heating, ventilation and air-conditioning
(HVAC) systems are responsible for half of
the energy consumed in commercial buildings
(Energy Information Administration, 2006). Re-
quirements for HVAC simulation and control are
driven by a near-term trend toward performance-
based design of buildings, and in a longer view, per-
formance of buildings connected to the energy grid
(Wetter et al., 2013). The importance of the con-
trol strategy in HVAC systems operation is due to
several factors. First, as people experience and be-
come more aware of the benefits of increased comfort
in a (indoor) controlled environment, those experi-
ences lead to higher expectations (Windham, 2014;
Purdon et al., 2013). Second, there is a growing need

to reduce energy consumption, particularly of fossil
fuels (Windham, 2014; Guo and Zhou, 2009). Ad-
vanced control algorithms are required to achieve low
levels of energy consumption in commercial build-
ings. Unfortunately, state-of-the-art software tools
are limited in their ability to simulate advanced con-
trollers (Trka and Hensen, 2010). Some tools of-
fer limited support for control, and others none at
all. Domain-independent tools, such as Matlab, pro-
vide a computational framework for evaluating the
mathematical aspects of model-based control, but
are poorly suited for capturing the semantic knowl-
edge of a domain and inference-based decision mak-
ing for control. To address these challenges there is a
need for new approaches to building simulation con-
trol that employ mixtures of formal and mathemat-
ical model-based control algorithms. One solution
is to exploit Semantic Web technologies in the area
of HVAC control. The Semantic Web provides an
ontology-based, inference-based extensible framework
to store and reuse data across different applications
and domains. This approach has been adapted in the
area of health care (Dung, T.Q. and Kameyama, W.,
2007), biology (Taswell C., 2008), and transportation
(Corsar et al., 2015).

During the past two decades, many researchers
and experts in the area of building simulation
have devoted considerable effort to the develop-
ment and application of improved control methods.
One area of interest is Model Predictive Control
(MPC). MPC has received considerable attention
(Faruque and Ahourai, 2014; Privara et al., 2011) be-
cause it allows for input from sources such as weather
forecasts, occupancy predictions, comfort ranges and
actuation constraints. From a mathematical stand-
point, MPC deals with modeling processes to opti-
mize control outputs based on predicting how they
will evolve in the future. The main purpose of MPC
is to compute the control outputs to minimize an ob-
jective function, which is usually a function of the sys-
tem states. The state space control model is used as
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a constraint in the optimization problem. The MPC
algorithm solves an incremental optimization prob-
lem over a time interval (prediction horizon), where
the computed control output at the first time step
is applied before the optimization is resolved and a
new control signal is generated for the next time step
in the prediction horizon. A second promising ap-
proach centers on use of Semantic Web technologies
for the shared conceptualization of domains in the
building environment, and tools for data-driven con-
trol. Together, these technologies offer solutions for
semantically-rich inference-based control, and can de-
duce new implicit information for decision making
through expressive features of Descriptive Logic (DL)
based on the existing data.

Objectives and Scope. This paper presents a first
step toward the integration of semantically-enabled
control strategies with MPC optimization. Our pro-
totype implementation creates ontologies, graphs of
semantic concepts, and rules for capturing domain
specific inference-based constraints.

Data from external sources

Reasoning

Temporal 
initial conditions

Model

Predictive 

Control
time horizon

Figure 1: Architecture for coupled semantic/MPC
HVAC system control.

A simplified architecture for simulation and control
is shown in Figure 1. Initial conditions for the MPC
stem from the semantic model and associated reason-
ing processes. The MPC provides time horizon in-
formation to the semantic model, which is combined
with data from external sources. We will demonstrate
the proposed approach on case study problem involv-
ing operation of a cooling, heating and power plant
equipped with a thermal energy storage (TES) unit
that is optimized for cost.

The remainder of this paper proceeds as follows: Sec-
tion 2 contains a brief introduction to the uses of the
Semantic Web and its enabling technologies. Section
3 explains the computational methods used in the
case study. Results of the case study are presented in
Section 4 and Section 5 discusses the next steps.

Semantic Web Technologies in the
Building Energy Domain

One goal in building automation and control is to em-
ulate human thinking and inferencing processes. For
our purposes, this can be interpreted as event-driven
decision making and control with a semantic descrip-
tion of domains and associated rules. To achieve this
goal, it is necessary to have network/Web access and
awareness of the environmental and building system

state and formal systems for inferencing processes.
The hypothesis of this work is that Semantic Web
technologies can play a pivotal role in this approach.

The Semantic Web aims to give information a
well-defined meaning, thereby creating a pathway
for machine-to-machine communication and auto-
mated services based on descriptions of semantics
(Berners-Lee et al., 2001). The realization of this
goal will require mechanisms that can work and rea-
son with data and semantic descriptions of data.

Semantic Web Technologies. Feigenbaum (2006)
proposed the technical infrastructure that supports
the Semantic Web vision known as Semantic Web
Stack. In this architecture, each new layer extends,
and provides compatibility with, the layers of tech-
nology below it. The lower layers provide capabil-
ity for addressing resources on the Web, linking doc-
uments, and representing multiple languages. The
extended markup language (XML) enables the con-
struction and management of documents composed
of structured portable data. The resource description
framework (RDF) allows for the modeling of graphs
of resources on the Web. An RDF Schema (RDFS)
provides the basic vocabulary for RDF statements,
and the machinery to create hierarchies of classes and
properties. The Web Ontology Language (OWL) ex-
tends RDFS functionality. Together, these features
and language capabilities provide the foundations for
reasoning – deriving implicit additional facts that are
not explicitly expressed by the ontology – with first
order and descriptive logic. In the Semantic Web, a
reasoner is software that can perform reasoning tasks
typically for ontologies defined in OWL or RDFS.

It is argued that axiomatic systems are better can-
didates than non-axiomatic systems for represent-
ing the formal models to be used in the inferenc-
ing process (Krachina and Raskin, 2006). Axiomatic
systems are systems composed of axioms. Many
logic systems fall into the axiomatic category, e.g.,
first-order and descriptive logic. As a case, DL is
the logical formalism for ontologies defined in OWL.
Inference-based rules are the rules that define an in-
ference of a new statement based on existing state-
ments. An ontology-based approach relies heavily on
expressive features of DL languages.

Semantic Modeling. Semantic models consist of
ontologies, descriptions of individuals, and rules de-
rived from engineering models. The ontology repre-
sents the concepts of the domain as classes and the re-
lations between those classes as “Object Properties”
(the connection between two objects of classes). As
a case, they can represent the domain of mechanical
equipment, weather, building, or occupant. More-
over, the classes may have attributes that are stored
as a simple data type “Datatype Properties”. RDFS
and OWL as ontology description languages can be
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used to describe the semantic relationships between
the concepts of the domain by the use of DL. Their
purpose is to define ontologies that include classes,
properties and their relationships to encode the se-
mantics of the domain to be machine readable. More-
over, these languages provide means for the machine
to effectively understand and reason about the con-
textual information. A context may refer to people,
building, time, weather and so on.

Utilizing Semantic Web technologies for rule check-
ing has several advantages: (1) Rules that represent
policies are easily communicated and understood, (2)
Rules retain a higher level of independence than logic
embedded in systems, (3) Rules separate knowledge
from its implementation logic, and (4) Rules can be
changed without changing source code or the underly-
ing model. A rule-based approach to problem solving
is particularly beneficial when the application logic
is dynamic (i.e., where a change in a policy needs to
be immediately reflected throughout the application)
and rules are imposed on the system by external enti-
ties. Both of these conditions apply to the simulation
and control of energy systems in buildings

A Trivial Example of Semantic Modeling. Fig-
ure 2 shows an example of capturing domain specific
constraints with inference-based rules.

Figure 2: a simplified semantic models and
rulesAustin et al. (2015).

In the upper right of the Figure 2 is the relation-
ship among classes and properties in a simplified fam-
ily ontology. In this semantic model, a person has
properties: hasAge, hasWeight, and hasBirthDate. A
Child may (or may not) attend Preschool. The up-
per left of Figure 2 shows one axiom (fact) and three
domain-specific rules. Sam is a boy born October 1,
2007. Given a birth date and a current time, a built-
in function, getAge(), compute Sam’s age. Further
rules can be defined for when a person is also a child
and when children attend Preschool. The schematic
along the bottom of the Figure shows the evolution
of a graph defining the properties of Sam, as a func-
tion of time. Some of the data (e.g., Sam’s birth-
date) remains constant over time. Other data (e.g.,
such as whether or not Sam attends preschool) is dy-
namic and is controlled by the domain-specific (fam-

ily) rules.

Semantic Modeling in the Building Energy
Domain

Figure 3 presents a framework for the generation and
implementation of semantic models, reasoning, and
design assessment in the building energy domain.

Properties

Instances

Data
Requirement
Individual

verify

Textual Requirements
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System Behavior

System Structure
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Ontologies and Models Design Rules and Reasoner

Design Rules

Reasoner

Relationships

Figure 3: Framework for implementation of ontology-
enabled design assessment (Delgoshaei, 2012).

In the building energy domain, the simulation results
of physical models, e.g., Modelica, and Building In-
formation Models (BIM), will determine the data in
the ontologies. The fragment of code:

[Rule:(?t rdf:type TemperatureSensor)greaterThan(?r,23C)

(?t isLocated ?s)(?s rdf:type interiorSpace)

(?currentTime isSummerPeak true)->

resetSetPoint(?setPoint,20)]

shows, for example, how semantic concepts like “inte-
riorSpace”, “isSummerPeak” can be used to capture a
domain specific constraint for an inference-based rule
to reset a temperature setpoint. The value of this ap-
proach is that these semantic definitions are adaptive
and flexible to change. For example, the concept of
“summer peak” may be defined differently in different
HVAC controllers. Moreover, the concept of “interior
space” will be defined once i.e., based on the number
of exposed walls, and the inference-based rules will
determine the category of each space based on that
definition. This semantically-enabled approach will
empower control techniques when used with physical-
based control strategies i.e., MPC.

Related Work. Corry et al. (2015) proposed an on-
tology that receives data from building objects, sen-
sors and simulation models and assesses that data in
a structured way. That is, to use the ontology as a
repository, or data integration tool. Han et al. (2015)
used a rule-based ontology reasoning for context-
aware building management to reduce energy waste.
They use Jena Rules for reasoning purposes in con-
text and policy. Moreover, the framework has been
tested for a real office to estimate the effect of en-
ergy saving measures. Furthermore, energy simula-
tion was performed with and without the rule-based
ontology system. The results were more promis-
ing in terms of lower energy waste when a rule-
based ontology approach was used. Han et al. (2016)
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utilizes ontology and inference rule sets for smart
home control of appliances. Jena API was used to
develop the ontology framework and the inference
rule sets. Terkaj and Sojic (2015) explain the con-
version of an EXPRESS schema representing Indus-
try Foundation Classes (IFC) into an OWL ontol-
ogy. IFC is the standard used for BIM. Beetz et al.
(2009) developed a converter to transform any for-
mat using an EXPRESS schema, like IFC to RDF.
Baumgrtel and Scherer (2016) study an optimization
framework on green building design. They used the
converted RDF from BIM models and provided input
to the simulation model based on the values from the
ontology.

Methods

The proposed control employs a semantic model (con-
sisting of an ontology and rule set) integrated into an
MPC model. The predictive control approach will ex-
ploit dynamic models and predictions of zone loads,
utility rates, and mechanical system models to mini-
mize energy cost while meeting equipment and ther-
mal comfort constraints. At each time step of the
prediction horizon, the semantically-enabled control
is called by the MPC unit to determine (via tem-
poral reasoning) the applicable electricity rate tariff.
The latter is based on time-variant electricity pricing
(TOU) and set the inputs (i.e., electricity cost), or
initial conditions (i.e., chiller mass flow rate), based
on the inferred electricity rates (see Figure 4). Our
prototype employs the Jena API (Apache Jena, 2016)
to create an OWL model of ontologies for time and
utility tariffs. Jena Rules are utilized to infer an ap-
plicable rate tariff during the MPC simulation.

MPC

Utilizing Temporal Reasoning

Time horizon
Utility rate

Initial conditions

Time Ontology Utility Ontology

Combined cooling, heating, and power plant 

Figure 4: Multi-level control structure for HVAC sys-
tems.

In state-of-the-art HVAC control strategies, the oper-
ational schedule is fixed and based on the rate sched-
ule. Our method, in contrast, utilizes the rate sched-
ule defined in inference-based rules with MPC to find
the optimal operating schedule, which has the ad-
vantage of providing a formal framework for choos-
ing the right control strategy. As a case in point, it

has been shown by Braun (1992) that in chilled water
plants, storage-priority control provided near-optimal
performance when there were significant differentials
between on-peak and off-peak energy charges. How-
ever, without TOU energy charges, chiller-priority
performed better.

Case Study Problem

The case study is based on the system and an MPC al-
gorithm developed by Chandan et al. (2012) for mod-
eling and cost optimization of a combined cooling,
heating and power (CCHP) plant. The plant con-
sists of seven electric chillers that can provide chilled
water to a campus for cooling, a stratified thermal
energy storage unit (TES), two generators, a gas tur-
bine, a steam turbine, and a heat recovery unit. The
plant supports co-generation, where the heat recov-
ered from generators is utilized for production of ther-
mal energy and electricity. TES is used to reshape
the cooling demand during the course of a day by
reducing the cooling load met by the chiller banks.
The inputs to MPC are the cost of electricity and
the building cooling load. The decision variables are
the chiller mass flow rates, mass flow rate supplied to
the building, the chiller supply temperature, the re-
turn temperature from the building, power supplied
by the gas turbine, and power purchased from the
grid.

MPC Formulation. Equation 1 is the objective
function to be minimized by MPC with the predic-
tion horizon of 24 hours. The first term represents the
cost of electricity and the second term is the cost of
fuel. Equation 2 captures the constraint on meeting
the campus cooling demand with the chillers. Equa-
tion 3 shows the balance between the electricity pur-
chased, produced and consumed. The left hand side
represents the total electricity purchased from the
grid and generated on campus. The right hand side
shows the campus electricity demand, pumps, chilled
water plant, cooling tower fan, and chiller electric-
ity consumption. Equations 2 and 3 are the system
constraints for the objective function.

Objective function

J =
24∑

k=1

(1000cgrid(k)Wgrid(k) + cf (k)mf (k)) (1)

Cooling demand constraint: For all k = 1, 2, ..., 24

nChiller∑

i=1

QCHW,i(k) = 1000QCooling(k) (2)
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Electricity Demand Constraint: For all k = 1, 2, ..., 24

Wgrid(k) +WGT (k) +WST (k)

= WElec(k) +
1

1000
(WP1(k) +WP2(k))+

1

1000
(WCHWP (k) +WCWP (k) +WCTF (k)+

∑

i=1

nChillerWCOMP,i(k))

(3)

Thermal Energy Storage Dynamics (TES). The
model employs a stratified two layer TES shown in
Figure 5, where Ta and Tb denote the top and bottom
layer water temperatures, respectively. The TES is
operated in two modes. In charging mode the chiller
bank will provide chilled water to the load and the
TES. In discharging mode, chilled water from the
TES and chiller bank are supplied to the load.

Return Valve

Top layer ’a’

(Cold)

(Warm) charge

Chiller Supply

Chiller Return

Load Return

charge

discharge

Tin,c

Tout,d

Tout,c

Tin,d

ṁT

TCHWR

ṁCHW
ṁT

TLR

TLS

Load Supply

TCHWS

Supply Valve

discharge

ṁL

Bottom layer ’b’

ṁCHW

ṁL

Figure 5: Schematic of the thermal energy storage.

Below are the equations to describe how the TES tem-
peratures evolve over time in both charging and dis-
charging modes. These equations also serve as con-
straints in the MPC formulation.

(a) Charging Mode Equations:

Overall Mass Flow Balance

ṁT = ṁCHW − ṁL (4)

Top Layer Energy Balance

ρcpw
dTa

dt
= fa,cṁT cpw(Tb − Ta) +UcA(Tb − Ta) (5)

Bottom Layer Energy Balance

ρcpw
dTb

dt
= fb,cṁT cpw(Tin,c − Tb) + UcA(Ta − Tb)

(6)
Supply Valve Temperatures

Tin,c = TLS = TCHWS (7)

Return Valve Temperatures

ṁTTout,c + ṁLTLR = ṁCHWTCHWR (8)

(b) Discharging Mode Equations:

Overall Mass Flow Balance

ṁT = ṁL − ṁCHW (9)

Top Layer Energy Balance

ρcpw
dTa

dt
= fa,dṁT cpw(Tin,d − Ta) + UdA(Tb − Ta)

(10)
Bottom Layer Energy Balance

ρcpw
dTb

dt
= fb,dṁT cpw(Ta−Tb)+UdA(Ta − Tb) (11)

Supply Valve Energy Balance

ṁTTout,d + ṁCHWTCHWS = ṁLTLS (12)

Return Valve Temperatures

Tin,d = TCHWR = TLR (13)

Equation 14 illustrates the heat transfer rates in
charging and discharging modes. Here, QCHW , QL,
QT , and δ are chilled water heat transfer, campus de-
mand, thermal storage heat transfer, and the thermal
storage control signal, respectively.

QCHW = δ(QL +QT ) + (1− δ)(QL −QT ) (14)

Time and Utility Ontology and Rule Sets.
The semantic modeling expands the temporal frame-
work developed by Petnga and Austin (2013). It uses
Jena API (Apache Jena, 2016) to create an ontol-
ogy for defining electricity tariffs by extending the
concepts from the Time ontology. Temporal reason-
ing is achieved by defining rules that reason about
time. For example, temporal reasoning is used to
determine if a specific point in time is in an inter-
val, or if an interval of time happens before another
interval. The classes of the Utility ontology are ex-
tensions from the Time ontology. Figure 6a depicts
the concepts and the relationships between them in
the Utility ontology. In this model, a time concept
belongs to the categories of “Interval” or “Instant”.
The concept of “Interval” represents any duration,
i.e., season, on/off/mid peak hour intervals. A con-
cept may have datatype properties that are shown as
rectangles attached to the concept. For example, the
“hasTime” property stores the date and time values
of an “Instant” in time. This general ontology will be
used for different cities to represent their electricity
tariff structures.
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hasPeak

Entity
Temporal

Instant Interval

beginsAt

is−A is−A

Time of Use

endsAthasTime

hasTimeValue

Hour
Season

Interval

is−A is−A is−A

Peak
SummerOn

is−A

isPeakhasRate

onPeak

hasPrice

Winter

is−A

Summer

is−A

(a) Utility Ontology

17

hasPeak

14 True 0.654 2010/30/2016

Time of Use Summer SummerOnPeak

beginsAt endsAt beginsAtonPeakhasPrice hasTime hasTimeValue isPeak hasRate endsAt

0.654 05/1/2016 True 08/08/2016

(b) Section of the Utility ontology for city of Austin, Texas

Figure 6: Utility tariff ontology.

Jena Rules

[Rule1: (?x rdf:type te:TemporalEntity) (?y rdf:type te:Instant) (?x te:beginsAt ?t1) (?x te:endsAt ?t2)

lessThan (?t1, ?t2) (?y te:hasTime ?t3) lessThan(?t1,?t3) greaterThan(?t2,?t3)

-> (?y te:isInInterval ?x) ]

[Rule2: (?season rdf:type te:Season) (?interval rdf:type te:TemporalEntity) (?season te:hasOnPeak ?hourInterval)

-> (?hourInterval te:isPeak "true"^^xs:boolean) ]

[Rule3: (?t te:isInHourInterval ?interval) (?interval te:isPeak ?peak)

-> (?t te:onPeak ?peak)]

[Rule4: (?tou rdf:type te:TimeOfUse) (?tou te:isInInterval ?season) (?tou te:hasTimeValue ?time)

(?tou te:isInHourInterval ?hourInterval) (?interval rdf:type te:Season)

(?interval te:hasPeak ?hourInterval) (?hourInterval te:hasRate ?rate) (?tou te:isInInterval ?interval)

-> (?tou te:hasPrice ?rate) ]

Figure 7: Sample OWL rules for Utility ontology.
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Figure 8: Simulation results for Austin, New York City and San Francisco; For TES 1=charge and 0=discharge
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Figure 6b shows parts of Utility ontology for the city
of Austin. As shown, the summer season in this city
begins on 05/01 and ends on 10/30. During this
season from 2 p.m. to 8 p.m. are on-peak hours.
The electricity rate tariff is based on Time of Use
(TOU) which breaks up the day into two or three
time intervals, i.e., off-peak, on-peak, mid-peak. In
addition, months are categorized as either the heat-
ing or cooling season. This approach encourages cus-
tomers to shift the load away from the times of the
day that demand and rates are higher. However, it
does not necessarily lead to less energy consumption
during critical peak periods, such as heat waves. As
depicted in Figure 4, at the beginning of the time
horizon, the MPC optimization routine acquires the
predicted utility rate and initial conditions for the
decision variables from the ontology. Figure 7 dis-
plays some sample Jena rules used in the case study.
The Utility ontology receives the “Time Of Use” from
the MPC routine and determines the season of oper-
ation through Rule1. Following that, Rule2 decides
which rate category (on/off/mid) the time of use is
in. Rule3 sets the flag of “onPeak” equal to the value
of “isPeak” in that time interval, i.e., if time of use
is in the on-peak category, the flag is set to “true”.
Finally, Rule4 extracts and deduces the cost of elec-
tricity based on the hour and date of use.

Results

The integrated approach provides a pathway toward
robust strategies of control that take into account
not only the physical constraints, but also the do-
main specific constraints and regulations of the op-
erating environment. The numerical experiments in-
dicate that MPC converges faster if inputs and ini-
tial conditions for the decision variables are obtained
based on inferred results of the semantic rules. In this
study the initial conditions for chiller mass flow rates
are computed from Equation 4 if the semantic model
determines the time is off-peak and TES should be
charged.

Figure 8 shows the results of the simulation with
integrated control. The MPC control method was
tested under three different rate tariffs structures
associated with Austin, New York City, and San
Francisco. The benefit of defining the rate tariff in a
semantic model and inference-based rules is that the
MPC method is unchanged even as the electricity
tariff structure is changed. It is important to note
that all three case studies use the same temporal
logic (rule sets), however, different ontologies are
created for each city to represent the semantics of
the electricity tariff for that specific city.

Figure 8a, bottom, shows the thermal storage control
signal (i.e., 1 charge and 0 discharge) based on the
inferred electricity rate for the city of Austin. Note
that the discharging process begins when the elec-

tricity rate increases (depicted on the top), during
the on-peak and mid-peak periods. Figures 8c and
e depict the rate structure and the TES control sig-
nal during a specific TOU in NYC and San Fran-
cisco, respectively. The impact of the TES control
strategy on chiller cooling loads for the city of Austin
is shown in Figure 8b. Figures 8d and f illustrate
the chiller, TES and campus heat transfer rates for
New York City and San Francisco, respectively. Note
the difference between TES heat transfer rates be-
tween these three cities. NYC and Austin benefit
more from TES during peak periods as compared to
San Francisco due to the small deviations between
on- and off-peak rates (a flat rate structure). The
operational cost of the plant on the simulated day
is $26,654, $32,900, $20,700 for NYC, San Francisco,
and Austin, respectively. In terms of the simulation
time, NYC, with three utility rate variations during
a day, requires less computational time than Austin
and San Francisco which each have five utility rate
variations. The elapsed time using a personal desk-
top with Core i7-4470 3.4GHz CPU and 32 GB RAM
was 263.3, 437.5, and 314.2 seconds for NYC, San
Francisco, and Austin, respectively.

Discussion

This work is an attempt to integrate the semantic
constraints of a certain domain (regulations) with
physical constraints described as mathematical equa-
tions. In our example, different utility tariff regula-
tions were represented as inference-based rules. The
next logical step is to expand the framework to in-
clude multiple domains along with their semantic con-
straints, i.e., building, mechanical equipment, occu-
pants. The physical models and MPC will interact
with these semantic models as shown in Figure 9.
And the results of physical simulations will provide
inputs to MPC and the ontologies. Consequently,
they will receive inputs for system properties and
setpoints from MPC or inference-based rules. Fu-
ture work will include improvement of the MPC for-
mulation to better represent the underlying physical
model. For example, the present case study problem
formulation does not include level-of-charge in the
storage. As a result, full storage discharge strategies
can not be considered. Moreover, the current MPC
formulation solution method (Newton’s method) is
very sensitive to the initial conditions. Therefore, a
more robust solution method is required.

Conclusion

This paper introduces a cross-disciplinary (i.e., com-
puter science and engineering) approach for build-
ing simulation control. This control strategy uses
semantic-based control integrated with MPC control.
To demonstrate the concept, this control strategy is
adapted for a CCHP plant. The inference-based con-
trol utilizes time and utility tariff ontologies along
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Figure 9: Hybrid control architecture for building simulations.

with rule sets enabling temporal reasoning to obtain
the appropriate rates in three different locations. The
inferred outputs from the ontology provide inputs and
a set of initial conditions to the MPC. The simulation
results reveal that the inferred initial conditions from
the ontology yield better results and faster computa-
tion time for MPC as compared to the guessed ini-
tial conditions. Moreover, modeling with ontologies
and rule sets will provide an easy to use, scalable,
and adaptive framework to capture the regulations
and constraints of the domain, i.e., it is convenient
to modify or add new rate tariffs without changing
the underlying control implementation. Another ad-
vantage is that unlike the mathematical constraints,
the rules are defined in English-like syntax that is
also machine readable. Lastly, the inference-based
rules can potentially play the role of a preproces-
sor for MPC simulations. We expect that a mature
implementation of cross-disciplinary control will em-
ploy semantic models and inference-based rules from
a multiplicity of domains (e.g., building, equipment
and occupants), and enable inference of information
from heterogeneous domains. This inferred informa-
tion will be an input to physical control models such
as MPC for better control outcomes.
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Nomenclature

Subscript Description

CHW Chilled water
i Chiller number
P Pump
L Load/campus
T TES
w Water
f Fuel
S Supply water stream from chiller/to campus
R Return water stream to chiller/from campus
a Top layer in 2-zone TES model
b Bottom layer in 2-zone TES model
in Inlet stream to TES/HRSG
out Outlet stream from TES/HRSG
GT Gas turbine
ST Steam turbine
grid Electricity grid
elec Campus electricity load
cooling Campus cooling load
1 Steam used to derive ST
2 Steam used for campus load heating
c TES charging mode
d TES discharging mode

Symbol Description

T Temperature (K)
Q Cooling consumed/produced (kW )
W Power consumed/produced (kW )
ṁ Mass flow rate (kg/s)
m Mass flow(kg)
ρ Density of water (kg/m3)
δ Thermal storage control ([])
cp Specific heat capacity (kJ/kg −K)
A Area of TES tank (m2)
c Unit cost of energy source

($/kWh for electricity) and ($/kg for fuel)

Acronym Description

BIM Building Information Models
CPP/CPR Critical Peak Pricing/Rebate
DL Descriptive Logic
HVAC Heating, Ventilation and Air-Conditioning
IFC Industry Foundation Classes
MPC Model Predictive Control
OWL Web Ontology Language
RDFS Resource Description Framework Schema
RTP Real Time Pricing
TES Thermal Energy Storage
TOU Time of Use
XML Extended Markup Language


