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Abstract 

This paper describes the coupling of a real estate / urban 

planning simulation model, UrbanSim, to a reduced order 

building energy model, ISOmodel, for estimating energy 

use and greenhouse gas emissions for a large urban region 

and allow building energy use and associated costs to be 

included in urban growth projections. Projected real-

estate information from UrbanSim, including building 

type, location, size, and number of occupants, is extracted 

from UrbanSim and used to generate inputs to the reduced 

order building energy model. ISOmodel is then used to 

estimate monthly gas and electric building energy use and 

associated carbon footprints in several end use categories. 

The scripts to couple the two tools consist primarily of 

Python code that makes extensive use of the Pandas data 

analysis library.  

Introduction 

Over the next several decades, several billion people are 

expected to migrate into cities, creating unprecedented 

increases in demand for food, water, energy, shelter, 

transportation, healthcare, education, and other services 

and infrastructure (World Bank 2017). These increases 

will be unsustainable without the accumulation of new 

knowledge to understand the relationships between these 

systems and development of new technologies and tools 

to better design our future urban centers, retrofit existing 

ones, and operate both more efficiently. Some of the key 

tools will be models that help decision makers understand 

the complex connections between people, the 

infrastructure, and the environment. 

UrbanSim (Waddell et al., 2002) is a state-of-the-art 

platform for simulation of real estate markets for support 

of planning and analysis of urban developments. 

UrbanSim models the interactions of land use, 

transportation, the economy, and environment but 

currently does not include any simulation of building 

energy or its related carbon footprint and costs. As a 

result, the impacts of building energy use on real estate 

decisions, namely energy costs and energy related 

changes in real estate value, are not included in the 

simulation. Nor can the urban planners directly use 

UrbanSim simulations to assess expected changes in 

energy use and carbon footprint as they investigate 

changes in the real estate market.  

Researchers at Argonne National Laboratory have 

developed a reduced order building energy model (BEM) 

based on the ISO 13790 and related standards, heretofore 

called the ISOmodel. Argonne’s ISOmodel has been used 

for urban building studies (Guzowski et al. 2012), has 

been incorporated as an alternative energy engine for 

OpenStudio (Muehleisen et al. 2013), and is used in the 

Argonne Commercial Building Agent Model (CoBAM), 

a technology market adoption model (Zhao et al. 2011, 

Muehleisen et al. 2016). This energy model captures 

much of the basic physics of building energy use and runs 

extremely fast, allowing it to be used as building energy 

model in agent based simulations or in uncertainty and 

sensitivity analyses where the energy simulation must be 

run hundreds of thousands to hundreds of millions of 

times in a complete simulation. This BEM is available as 

both a part of the OpenStudio package (Guglielmetti et al. 

2011) and as a standalone executable (ANL 2017a). 

This paper describes the coupling of the Argonne 

ISOmodel to UrbanSim including the data extracted from 

UrbanSim for energy modeling, the methodology used for 

generating input files for the ISOmodel from the 

UrbanSim data, the running of the ISOmodel, and 

aggregation of data from the ISOmodel. An example of 

use of the code to analyse UrbanSim data from the city of 

San Francisco is shown. 

UrbanSim 

UrbanSim is an open source model system for analyzing 

urban development with an emphasis on modeling real 

estate markets. UrbanSim was originally written in Java 

more than two decades ago. It was modularized and 

implemented in Python about a decade ago making 

extensive use of several numerical libraries. Most recently 

it has been rewritten again to make use of the Pandas data 

analysis library (McKinney 2010) to help make the 

capability more widely accessible to urban planners and 

modelers (Waddell 2016). Pandas is an open source set of 

data structure and data analysis tools for Python (both 

Python V2.7 and V3.5) that has become one of the most 

popular set of tools for use in data science in Python. 
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UrbanSim is a yearly simulation that utilizes six main 

modules that are run in sequence as shown in Figure 1 

below. 

 

 

Figure 1: UrbanSim flow model (gray) augmented with 

an external building energy model (blue). 

 

The accessibility model combines data from external 

transit models and land use data to estimate accessibility 

between locations within the region under study. It is used 

as an input to the other modules as well as any external 

transit models. 

The economic and demographic transition model 

estimates the number of new households and jobs that will 

be added region in the study in the year. 

The residence and employment mobility model simulates 

the decision of households and jobs to change location 

within the region of study in the year. 

The residential and employment location choice models 

simulate the location choice decisions taken by the 

households and jobs that change. 

The real estate development model simulates the actions 

of real estate developers to develop sections of the city 

including location and the type of development. 

The land price model simulates changes in the real estate 

market, balancing real estate supply and demand. 

At the end of the yearly simulation, UrbanSim has 

generated a new set of real estate and occupant data which 

are used as inputs along with other external data, for the 

next year of simulation.  

Building energy use data from the ISOmodel, combined 

with localized fuel costs, can be used to estimate energy 

related building costs. Those costs, along with the raw 

building energy use can then be fed back into UrbanSim 

and can be used by the simulation as additional inputs 

within the various models.  

Coupling UrbanSim to the ISOmodel 

The ISOmodel is coupled to UrbanSim through a set of 

Python scripts which extract data from the UrbanSim data 

frames, create the necessary input files for the ISOmodel, 

run the ISOmodel, and import the results back into 

UrbanSim to add to the UrbanSim data frames. The 

scripts make extensive use of the Pandas Data Analysis 

library. The scripts are written in Python V2.7 for 

compatibility with UrbanSim which currently also uses 

Python V2.7. A flow diagram of the scripts is shown in 

Figure 2 below. 

 

 

Figure 2: Flow diagram showing the order and basic 

operations of the major Python scripts. 
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Data Extraction 

The first Python script developed for this project, 

extract_bldg_stock.py, is used to access and extract the 

building information from the UrbanSim HDF5 data file 

that houses most of the UrbanSim input data and run 

results. This script creates two data frames: one for storing 

all the buildings and a second for storing households listed 

in the UrbanSim HDF5 file. 

The script then totals the number of people who are listed 

to be in each building and creates a new data frame that 

merges the information from the household and buildings 

data frames. This data frame is then saved to disk in a 

CSV format for conversion into ISOmodel BEM inputs. 

These data are saved in CSV instead of HDF5 format for 

ease of review and edit by the user using standard text 

editors or Excel. The data that are extract during this 

process include: 

• building_id: identifier for individual buildings 

• parcel_id: identifier for the building lot 

• residential_units: number of residential units in 

building 

• non_residential_units: number of non-

residential units in building  

• building_area: total floor area of the building in 

sqft 

• stories: height of the building in stories 

• building_type_id: numeric identifier of the 

overall building type (used for categorizing the 

building type and selecting default BEM inputs) 

• year_built: year of building construction (used in 

choosing default BEM inputs) 

• household_count: number of households 

residing in building 

• num_people: total number of people in the 

building  

Generating BEM Input Files 

The second Python script, write_isms.py, analyzes the 

extracted building data table and generates input files for 

the BEM from the extracted data. For each building in the 

table, the Python script will generate and populate a 

default building energy model based upon the building 

type and year built. The mapping of building type and 

year of build to default BEM model input values is one of 

the most important steps in the process. Unfortunately, 

UrbanSim does not have a standardized way of mapping 

the actual building type to the number assigned to 

building_type_id as stored in the HDF5 file. This 

mapping is left to the choice of the UrbanSim modeler. 

This means that users of the BEM scripts described here 

must carefully confirm the mapping of the actual building 

type to the building_type_id values used in UrbanSim to 

ensure that the correct BEM default values are correctly 

selected.  

Correctly identifying the building type, vintage, and areas 

when selecting the correct BEM default values is most 

important when modeling existing building stock and 

making policy decisions related to renovation of that 

existing building stock, because misidentification could 

lead to a very inaccurate energy model.  

For recent construction and new buildings to be 

constructed a good set of default values could be derived 

from modeling a minimum code compliant building for 

that city. A small fraction of the new buildings could be 

modeled as higher performance buildings with more 

energy efficient envelope features and HVAC design, 

based on statistics of what fraction of buildings obtain 

performance ratings such as LEED, Energy Star, or 

Passive House. 

For existing buildings, creating a set of building models 

that accurately model the building energy use is a 

daunting task for a large city, but methodologies have 

been developed to make good use of a variety of data 

sources and ease the data collection burden including 

CHEERI (Guzowski et al., 2012), CityBES (Hong et al. 

2016) and UBEM (Cerezo Davila et al. 2016). These 

methods also assign default building models and values 

based upon the size, type, and vintage of the building 

 

Table 1: Default ISOmodel BEM parameters set by the 

building type and vintage selection 

Element Parameters 

Wall and 

Roofs 

Thermal Resistance, Thermal Mass, Solar 

Absorptivity, Thermal Emissivity 

Windows 

and 

Skylights 

Assembly “U” Value, Solar Heat Gain 

Coefficient, Shading Coefficient, Window 

to Wall Ratio, Skylight to Roof Ratio 

Lighting Interior Lighting Power Density, Exterior 

Total Lighting Power, Lighting Schedules, 

Lighting Controls 

Interior 

Loads 

Gas and Electric Interior Load Power 

Densities, Heat Gain Per Person, Interior 

Load Schedules 

HVAC Thermostat Set Points and Schedules, 

HVAC System Type, Fuel, and 

Efficiency, Ventilation Rate (per person 

and floor area), Hot Water Heater Fuel and 

Efficiency, Fan and Pump Efficiency, 

HVAC Control 

Other Window to Wall Ratio, Skylight to Roof 

Ratio, Enclosure Aspect Ratio, Building 

Floor-to-Floor Height, Hot Water Use Per 

Person, Infiltration Rate 

 

The default building model selected is used to set the 

upper and lower limits and mode of a triangle distribution 

for many of the BEM inputs as shown in Table 1 above. 

The floor area and building height (in stories) data 

extracted from UrbanSim are used with the default aspect, 

window-to-wall, and skylight-to-roof, ratio to generate 

sizes of walls, windows, and roofs. The floor area data and 

occupancy extracted from UrbanSim are used with default 
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parameters to generate BEM inputs related to occupant 

density, ventilation rate, and hot water demand. HVAC 

system and lighting and interior load inputs are 

determined by the building type. 

For each building extracted from the UrbanSim 

simulation, random input values are generated from the 

distribution ranges as described above to create unique 

ISOmodel building energy model input files for each 

building. These ISOmodel input files are simple text files 

and can be easily read by and edited by the user. 

The generated input files are stored on disk in a user 

defined folder location. The current scripts utilize a single 

weather data model. If additional weather data are 

available, the script could be modified to select the 

weather data for the closest weather station. Such a 

modification would require a change to the data extraction 

script in order to extract the building parcel location and 

select the most appropriate weather data file. 

 

Running the BEM Model 

A third Python script, run_isms.py, is used to look at the 

contents of the ISOmodel input file folder and run the 

standalone ISOmodel program for each of the input files 

and selected weather files, generating an associated 

energy use output CSV file placed in a user selected 

location. 

The energy use output file is a CSV file consisting of 12 

rows and 12 columns (not counting the header/label rows 

and columns) with the energy use as an energy use 

intensity (EUI) in kWh/m2. Each row represents a month 

and the columns have estimates of the following energy 

end use: 

• Electricity used for Heating and Cooling 

• Electricity used for Interior and Exterior lights 

• Electricity used for Electric Fans and Pumps 

• Electricity used by interior electrical equipment 

• Electricity used for domestic hot water heat. 

• Gas used for Heating and Cooling 

• Gas used by miscellaneous interior equipment 

• Gas used for domestic hot water heating 

Post-processing the BEM outputs 

A fourth script, combine_ism_outs.py, loads the output 

data from the individual ISOmodel runs into Python and 

used to create a data frame with the whole building and 

end use monthly EUIs for each building. This data frame 

is saved to a new HDF5 file.  

A fifth script, analyze_ism_outs.py, will read the data 

frame into Python, do some quality control checking, 

aggregate monthly data into yearly total EUIs for each 

building, and analyze the results for statistical information 

including mean, median, standard deviation, and quantile 

percentages. 

Quality control checking consists of looking for data with 

abnormally high or low yearly EUI which indicate errors 

in the input file generation process created by incorrect 

extraction of data from UrbanSim or incorrect data in the 

UrbanSim model. As an example, during development we 

found a residential building with an EUI of 2000 kWh/m2. 

In sorting through the input data, we found that the 

building was a multistory residential building with 10 

households but with an area of only 95 sqft. Further 

investigation found that this was a problem with the actual 

UrbanSim data and not the extraction by our scripts. 

These are the sort of data that must be double checked by 

the user. 

This script could be easily augmented to provide 

additional analysis such as conversion of site-to-source 

energy use and the associated carbon footprint. Because 

of the regional variations in electricity generation sources 

and transmission and distribution system efficiencies, 

local, or at least regional source-to-site and greenhouse 

gas emission conversion factors would need to be 

provided by the modeler.   

Pandas Data Analysis Library 

The Python code used in the project makes extensive use 

of Pandas data frames and the data frame operators 

defined in Pandas. This library has great support for a 

variety of common data types and operations common to 

statistical analysis of large data sets. The routines are fast, 

handle missing data well, and handle both two and three-

dimensional data sets. Code written using Pandas can be 

extremely compact, easy to read, and easy to maintain. 

For example, the code required to generate a table of 

quantile statistics for a data series of building total yearly 

EUI named bldg_yr_eui would look like:  

levels = [0.05, 0.25,0.05, 0.75 ,0.95] 
y = bldg_yr_eui.quantile(levels) 

In addition to statistical functions, Pandas makes use of 

the Matplotlib (Hunter 2007) to provide easy access to 

many visualization functions. The code required to 

generate a probability normalized histogram plot of the 

same bldg_yr_eui discussed above would look like: 

bldg_yr_eui.plot.hist(normed=True) 

The use of Pandas thus creates a set of Python scripts that 

are easy to read, maintain, and modify. 

Speed of Model Execution 

It is important that the speed of the building energy 

modeling be sufficiently fast that urban planners and 

policy makers can adjust and run scenarios by hand or 

utilize an optimization “wrapper” that will minimize or 

maximize some model output quantity. This need for 

speed precludes the use of a detailed BEM such as DOE2 

or EnergyPlus unless the modeling was done using cloud 

computing or high performance computing (HPC). Even 

then, the computing and software system would need to 

be set up very carefully in order to ensure that data 

transfer to/from the cloud or HPC was fast enough and 

enough processing power was utilized that the turnaround 

time for the simulation of hundreds of thousands of BEM 

was reasonable. This is one of the reasons for using the 

reduced order ISOmodel in the coupling to UrbanSim. 

The ISOmodel runs extremely fast, on the 10 milliseconds 
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for each building model. The largest fraction of that time 

currently binvolves reading the weather file and BEM 

input file from disk and writing output data to disk in 

readable CSV format.  

To further improve the speed for this particular 

integration the C++ ISOmodel could be modified to 

utilize a fast binary file format such as HDF5 (already 

used natively by UrbanSim) or Feathers (McKinney 

2016), a new and very fast data frame storage format 

designed for interchange between Python, R, and C++. 

Then the entire set of BEM inputs could be passed to the 

ISOmodel as a single binary file and the ISOmodel would 

read it and the weather data file only once, loop through 

the entire array of inputs, and generate a single binary 

output file with all the output data.  

Model Validation 

One of the most important aspects of developing such a 

modeling mechanism is validation of the model. When 

using UrbanSim to generate predictions of future real-

estate development, there are no data to use for 

calibration. However, UrbanSim does use some existing 

data about a city as the starting point for the future 

predictions and those existing data can be analyzed as one 

type of validation of the model. 

The two main components of this exercise have been 

previously validated. UrbanSim validation can be found 

in Waddell et al. 2002. Validation of the ISOmodel 

through comparison to EnergyPlus can be found in 

Guzowski et al. 2014. Because there is no interaction 

between the models yet, (i.e. the energy use computed 

with the ISOmodel is not yet fed back into UrbanSim as 

an input that affects building prices), there was no 

compelling need for validation of the combined model. 

Validation of the combined model is planned for the 

future using some of the building energy data used by the 

aforementioned CityBES project along with one of the 

more detailed San Francisco UrbanSim models. 

Example: San Francisco 

The UrbanSim developers have an example data set 

developed from real data for the city of San Francisco. 

These data are available for download from the UrbanSim 

GitHub repository. This is not a complete set of the San 

Francisco building stock and data have been anonymized 

to avoid privacy issues and thus these data are not 

appropriate for a validation. However, the data are a fair 

statistical representation of the building stock of San 

Francisco fairly well and can be used to illustrate the 

coupling of the models.  

The data set includes over 113,000 individual buildings, 

most of which are residential or primarily residential. The 

data set defines 14 unique building types: three 

residential, two office, one hotel, one school, three 

industrial, two retail, one mixed residential, and one 

mixed office, but details about the individual types are 

lacking, so the exact mapping of a building type in 

UrbanSim to a specific building type and default set of 

inputs (i.e. a specific reference building) has great 

uncertainty. As a result, for this example, the authors have 

used a set of default data from the DOE reference building 

set rather than a set of reference buildings specifically 

derived for San Francisco because the purpose of the 

exercise was to show the utility of the integration rather 

than generate true actionable information for an urban 

planner.  

Once the data generated by UrbanSim or the ISOmodel 

have been read into Pandas data frames in Python, 

manipulation of those data is fairly simple. The data frame 

generated by the ISOmodel includes the set of monthly 

EUI for all the end use categories for all 113,000 

buildings. Using Pandas, the total yearly EUI for each 

building, summed over all categories, can be obtained 

with a single command. 

An example of the statistical information that is easily 

obtained from the simulation is shown in Table 2. Simple 

statistics including mean, standard deviation, min, and 

max in additional to quartile statistics are obtained with 

the two Pandas data frame commands mentioned earlier. 

 

Table 2: Statistics generated by project scripts from the 

UrbanSim San Francisco example data.  

Statistic EUI (kWh/m2) 

Mean 304 

Standard Deviation 92 

Min 72 

5% Quartile 175 

25% Quartile 242 

50% Quartile 294 

75% Quartile 354 

95% Quartile 465 

Max 998 

 

Another typical analysis a researcher or planner may want 

to do is to generate a histogram of the building energy use 

intensities (EUIs). Again, using Pandas, a probability 

normalized histogram can be generated and plotted like 

the one shown in Figure 3 in a single line of Python code 

as described earlier. 

When the data frame containing the individual building 

EUIs is read back into UrbanSim and added to the existing 

data tables of the program, the 3D visualization 

capabilities that are being developed in conjunction with 

UrbanSim will be able to be used for better visualization 

of building energy data. Figure 4 below is an example of 

the sort of false color plot that could be generated from 

UrbanSim. Such a plot could be generated where the color 

is related to the EUI or total energy use of the building. 

The color in Figure 4 is related to the year of construction. 
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Figure 3: Probability histogram from the output of the 

San Francisco example data supplied with UrbanSim. 

 

As the UrbanSim simulation is run and the data set 

evolves, the change in the total city EUI, or categorical 

EUI or even building-by-building EUI could be 

computed. 

 

 

Figure 4: False color plot showing projection of 

building related data on a 3D map of San Francisco. 

Future Work 

The Python scripts for extracting building data, 

generating BEM input files, running the BEM, reading the 

BEM outputs and doing basic analysis will soon be 

released as an open source software package on the 

Argonne National Laboratory GitHub site (ANL 2017b). 

But, there is still much work to be done to further integrate 

the ISOmodel with UrbanSim. Perhaps the most 

important follow-on work is to make the modifications to 

UrbanSim to utilize the energy use data and the associated 

energy costs in the decision logic of UrbanSim, 

particularly the Residence and Employment Location 

Module and the Real Estate Development Modules. 

The authors plan on modifying the ISOmodel C++ code 

to accept an energy model passed as a memory object 

from Python and to return computation results as a 

memory object to Python to speed the simulations 

significantly. 

As the 3D visualization capabilities of UrbanSim are 

extended, another important future extension is to ensure 

that the data generated by the BEM are added back to 

UrbanSim in such a manner as to make it accessible by 

the UrbanSim 3D visualization modules. A third 

important follow-on project would be to implement data 

exchange between UrbanSim and the ISOmodel using 

data frames and a fast file format such as HDF5 or Feather 

as described earlier rather than individual input and output 

files utilizing CSV format. 

Conclusion 

This paper has discussed the first steps at integration of 

the Argonne ISOmodel, a reduced order building energy 

model, with the UrbanSim urban dynamic modeling 

software. UrbanSim is used to generate information about 

the changing building stock including locations, types, 

and occupancy of buildings within a city. Python scripts 

are used to extract the useful building information from 

UrbanSim and generate inputs the ISOmodel BEM and 

run the energy model on a building-by-building basis. The 

resulting BEM outputs are saved and read back into 

Python data frames where the data can be aggregated and 

statistically analyzed and put back into UrbanSim for 

further use by UrbanSim. 
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