
Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

521
https://doi.org/10.26868/25222708.2017.136

Coupling a Reduced Order Building Energy Model to UrbanSim

Ralph T. Muehleisen1, Joshua Bergerson2

1Energy Systems Division, Argonne National Laboratory, Argonne, IL, USA
2Global Security Sciences Division, Argonne National Laboratory, Argonne, IL, USA

Abstract

This paper describes the coupling of a real estate / urban

planning simulation model, UrbanSim, to a reduced order

building energy model, ISOmodel, for estimating energy

use and greenhouse gas emissions for a large urban region

and allow building energy use and associated costs to be

included in urban growth projections. Projected real-

estate information from UrbanSim, including building

type, location, size, and number of occupants, is extracted

from UrbanSim and used to generate inputs to the reduced

order building energy model. ISOmodel is then used to

estimate monthly gas and electric building energy use and

associated carbon footprints in several end use categories.

The scripts to couple the two tools consist primarily of

Python code that makes extensive use of the Pandas data

analysis library.

Introduction

Over the next several decades, several billion people are

expected to migrate into cities, creating unprecedented

increases in demand for food, water, energy, shelter,

transportation, healthcare, education, and other services

and infrastructure (World Bank 2017). These increases

will be unsustainable without the accumulation of new

knowledge to understand the relationships between these

systems and development of new technologies and tools

to better design our future urban centers, retrofit existing

ones, and operate both more efficiently. Some of the key

tools will be models that help decision makers understand

the complex connections between people, the

infrastructure, and the environment.

UrbanSim (Waddell et al., 2002) is a state-of-the-art

platform for simulation of real estate markets for support

of planning and analysis of urban developments.

UrbanSim models the interactions of land use,

transportation, the economy, and environment but

currently does not include any simulation of building

energy or its related carbon footprint and costs. As a

result, the impacts of building energy use on real estate

decisions, namely energy costs and energy related

changes in real estate value, are not included in the

simulation. Nor can the urban planners directly use

UrbanSim simulations to assess expected changes in

energy use and carbon footprint as they investigate

changes in the real estate market.

Researchers at Argonne National Laboratory have

developed a reduced order building energy model (BEM)

based on the ISO 13790 and related standards, heretofore

called the ISOmodel. Argonne’s ISOmodel has been used

for urban building studies (Guzowski et al. 2012), has

been incorporated as an alternative energy engine for

OpenStudio (Muehleisen et al. 2013), and is used in the

Argonne Commercial Building Agent Model (CoBAM),

a technology market adoption model (Zhao et al. 2011,

Muehleisen et al. 2016). This energy model captures

much of the basic physics of building energy use and runs

extremely fast, allowing it to be used as building energy

model in agent based simulations or in uncertainty and

sensitivity analyses where the energy simulation must be

run hundreds of thousands to hundreds of millions of

times in a complete simulation. This BEM is available as

both a part of the OpenStudio package (Guglielmetti et al.

2011) and as a standalone executable (ANL 2017a).

This paper describes the coupling of the Argonne

ISOmodel to UrbanSim including the data extracted from

UrbanSim for energy modeling, the methodology used for

generating input files for the ISOmodel from the

UrbanSim data, the running of the ISOmodel, and

aggregation of data from the ISOmodel. An example of

use of the code to analyse UrbanSim data from the city of

San Francisco is shown.

UrbanSim

UrbanSim is an open source model system for analyzing

urban development with an emphasis on modeling real

estate markets. UrbanSim was originally written in Java

more than two decades ago. It was modularized and

implemented in Python about a decade ago making

extensive use of several numerical libraries. Most recently

it has been rewritten again to make use of the Pandas data

analysis library (McKinney 2010) to help make the

capability more widely accessible to urban planners and

modelers (Waddell 2016). Pandas is an open source set of

data structure and data analysis tools for Python (both

Python V2.7 and V3.5) that has become one of the most

popular set of tools for use in data science in Python.

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

522

UrbanSim is a yearly simulation that utilizes six main

modules that are run in sequence as shown in Figure 1

below.

Figure 1: UrbanSim flow model (gray) augmented with

an external building energy model (blue).

The accessibility model combines data from external

transit models and land use data to estimate accessibility

between locations within the region under study. It is used

as an input to the other modules as well as any external

transit models.

The economic and demographic transition model

estimates the number of new households and jobs that will

be added region in the study in the year.

The residence and employment mobility model simulates

the decision of households and jobs to change location

within the region of study in the year.

The residential and employment location choice models

simulate the location choice decisions taken by the

households and jobs that change.

The real estate development model simulates the actions

of real estate developers to develop sections of the city

including location and the type of development.

The land price model simulates changes in the real estate

market, balancing real estate supply and demand.

At the end of the yearly simulation, UrbanSim has

generated a new set of real estate and occupant data which

are used as inputs along with other external data, for the

next year of simulation.

Building energy use data from the ISOmodel, combined

with localized fuel costs, can be used to estimate energy

related building costs. Those costs, along with the raw

building energy use can then be fed back into UrbanSim

and can be used by the simulation as additional inputs

within the various models.

Coupling UrbanSim to the ISOmodel

The ISOmodel is coupled to UrbanSim through a set of

Python scripts which extract data from the UrbanSim data

frames, create the necessary input files for the ISOmodel,

run the ISOmodel, and import the results back into

UrbanSim to add to the UrbanSim data frames. The

scripts make extensive use of the Pandas Data Analysis

library. The scripts are written in Python V2.7 for

compatibility with UrbanSim which currently also uses

Python V2.7. A flow diagram of the scripts is shown in

Figure 2 below.

Figure 2: Flow diagram showing the order and basic

operations of the major Python scripts.

analyze_isms.py
Analyze ISOmodel output data

frame

EUI by
Category

Stats

Yearly
EUI

Stats

Visualiza
-tions

combine_ism_outs.py
Read all ISOmodel outputs and

create data frame

run_isms.py
Run ISOmodel on all input files

write_isms.py
Analyze building stock data and
generate ISOmodel input files

extract_bldg_stock.py
Read UrbanSim data frame and
extract basic building stock data

to CSV

UrbanSim
Output Data

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

523

Data Extraction

The first Python script developed for this project,

extract_bldg_stock.py, is used to access and extract the

building information from the UrbanSim HDF5 data file

that houses most of the UrbanSim input data and run

results. This script creates two data frames: one for storing

all the buildings and a second for storing households listed

in the UrbanSim HDF5 file.

The script then totals the number of people who are listed

to be in each building and creates a new data frame that

merges the information from the household and buildings

data frames. This data frame is then saved to disk in a

CSV format for conversion into ISOmodel BEM inputs.

These data are saved in CSV instead of HDF5 format for

ease of review and edit by the user using standard text

editors or Excel. The data that are extract during this

process include:

• building_id: identifier for individual buildings

• parcel_id: identifier for the building lot

• residential_units: number of residential units in

building

• non_residential_units: number of non-

residential units in building

• building_area: total floor area of the building in

sqft

• stories: height of the building in stories

• building_type_id: numeric identifier of the

overall building type (used for categorizing the

building type and selecting default BEM inputs)

• year_built: year of building construction (used in

choosing default BEM inputs)

• household_count: number of households

residing in building

• num_people: total number of people in the

building

Generating BEM Input Files

The second Python script, write_isms.py, analyzes the

extracted building data table and generates input files for

the BEM from the extracted data. For each building in the

table, the Python script will generate and populate a

default building energy model based upon the building

type and year built. The mapping of building type and

year of build to default BEM model input values is one of

the most important steps in the process. Unfortunately,

UrbanSim does not have a standardized way of mapping

the actual building type to the number assigned to

building_type_id as stored in the HDF5 file. This

mapping is left to the choice of the UrbanSim modeler.

This means that users of the BEM scripts described here

must carefully confirm the mapping of the actual building

type to the building_type_id values used in UrbanSim to

ensure that the correct BEM default values are correctly

selected.

Correctly identifying the building type, vintage, and areas

when selecting the correct BEM default values is most

important when modeling existing building stock and

making policy decisions related to renovation of that

existing building stock, because misidentification could

lead to a very inaccurate energy model.

For recent construction and new buildings to be

constructed a good set of default values could be derived

from modeling a minimum code compliant building for

that city. A small fraction of the new buildings could be

modeled as higher performance buildings with more

energy efficient envelope features and HVAC design,

based on statistics of what fraction of buildings obtain

performance ratings such as LEED, Energy Star, or

Passive House.

For existing buildings, creating a set of building models

that accurately model the building energy use is a

daunting task for a large city, but methodologies have

been developed to make good use of a variety of data

sources and ease the data collection burden including

CHEERI (Guzowski et al., 2012), CityBES (Hong et al.

2016) and UBEM (Cerezo Davila et al. 2016). These

methods also assign default building models and values

based upon the size, type, and vintage of the building

Table 1: Default ISOmodel BEM parameters set by the

building type and vintage selection

Element Parameters

Wall and

Roofs

Thermal Resistance, Thermal Mass, Solar

Absorptivity, Thermal Emissivity

Windows

and

Skylights

Assembly “U” Value, Solar Heat Gain

Coefficient, Shading Coefficient, Window

to Wall Ratio, Skylight to Roof Ratio

Lighting Interior Lighting Power Density, Exterior

Total Lighting Power, Lighting Schedules,

Lighting Controls

Interior

Loads

Gas and Electric Interior Load Power

Densities, Heat Gain Per Person, Interior

Load Schedules

HVAC Thermostat Set Points and Schedules,

HVAC System Type, Fuel, and

Efficiency, Ventilation Rate (per person

and floor area), Hot Water Heater Fuel and

Efficiency, Fan and Pump Efficiency,

HVAC Control

Other Window to Wall Ratio, Skylight to Roof

Ratio, Enclosure Aspect Ratio, Building

Floor-to-Floor Height, Hot Water Use Per

Person, Infiltration Rate

The default building model selected is used to set the

upper and lower limits and mode of a triangle distribution

for many of the BEM inputs as shown in Table 1 above.

The floor area and building height (in stories) data

extracted from UrbanSim are used with the default aspect,

window-to-wall, and skylight-to-roof, ratio to generate

sizes of walls, windows, and roofs. The floor area data and

occupancy extracted from UrbanSim are used with default

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

524

parameters to generate BEM inputs related to occupant

density, ventilation rate, and hot water demand. HVAC

system and lighting and interior load inputs are

determined by the building type.

For each building extracted from the UrbanSim

simulation, random input values are generated from the

distribution ranges as described above to create unique

ISOmodel building energy model input files for each

building. These ISOmodel input files are simple text files

and can be easily read by and edited by the user.

The generated input files are stored on disk in a user

defined folder location. The current scripts utilize a single

weather data model. If additional weather data are

available, the script could be modified to select the

weather data for the closest weather station. Such a

modification would require a change to the data extraction

script in order to extract the building parcel location and

select the most appropriate weather data file.

Running the BEM Model

A third Python script, run_isms.py, is used to look at the

contents of the ISOmodel input file folder and run the

standalone ISOmodel program for each of the input files

and selected weather files, generating an associated

energy use output CSV file placed in a user selected

location.

The energy use output file is a CSV file consisting of 12

rows and 12 columns (not counting the header/label rows

and columns) with the energy use as an energy use

intensity (EUI) in kWh/m2. Each row represents a month

and the columns have estimates of the following energy

end use:

• Electricity used for Heating and Cooling

• Electricity used for Interior and Exterior lights

• Electricity used for Electric Fans and Pumps

• Electricity used by interior electrical equipment

• Electricity used for domestic hot water heat.

• Gas used for Heating and Cooling

• Gas used by miscellaneous interior equipment

• Gas used for domestic hot water heating

Post-processing the BEM outputs

A fourth script, combine_ism_outs.py, loads the output

data from the individual ISOmodel runs into Python and

used to create a data frame with the whole building and

end use monthly EUIs for each building. This data frame

is saved to a new HDF5 file.

A fifth script, analyze_ism_outs.py, will read the data

frame into Python, do some quality control checking,

aggregate monthly data into yearly total EUIs for each

building, and analyze the results for statistical information

including mean, median, standard deviation, and quantile

percentages.

Quality control checking consists of looking for data with

abnormally high or low yearly EUI which indicate errors

in the input file generation process created by incorrect

extraction of data from UrbanSim or incorrect data in the

UrbanSim model. As an example, during development we

found a residential building with an EUI of 2000 kWh/m2.

In sorting through the input data, we found that the

building was a multistory residential building with 10

households but with an area of only 95 sqft. Further

investigation found that this was a problem with the actual

UrbanSim data and not the extraction by our scripts.

These are the sort of data that must be double checked by

the user.

This script could be easily augmented to provide

additional analysis such as conversion of site-to-source

energy use and the associated carbon footprint. Because

of the regional variations in electricity generation sources

and transmission and distribution system efficiencies,

local, or at least regional source-to-site and greenhouse

gas emission conversion factors would need to be

provided by the modeler.

Pandas Data Analysis Library

The Python code used in the project makes extensive use

of Pandas data frames and the data frame operators

defined in Pandas. This library has great support for a

variety of common data types and operations common to

statistical analysis of large data sets. The routines are fast,

handle missing data well, and handle both two and three-

dimensional data sets. Code written using Pandas can be

extremely compact, easy to read, and easy to maintain.

For example, the code required to generate a table of

quantile statistics for a data series of building total yearly

EUI named bldg_yr_eui would look like:

levels = [0.05, 0.25,0.05, 0.75 ,0.95]
y = bldg_yr_eui.quantile(levels)

In addition to statistical functions, Pandas makes use of

the Matplotlib (Hunter 2007) to provide easy access to

many visualization functions. The code required to

generate a probability normalized histogram plot of the

same bldg_yr_eui discussed above would look like:

bldg_yr_eui.plot.hist(normed=True)

The use of Pandas thus creates a set of Python scripts that

are easy to read, maintain, and modify.

Speed of Model Execution

It is important that the speed of the building energy

modeling be sufficiently fast that urban planners and

policy makers can adjust and run scenarios by hand or

utilize an optimization “wrapper” that will minimize or

maximize some model output quantity. This need for

speed precludes the use of a detailed BEM such as DOE2

or EnergyPlus unless the modeling was done using cloud

computing or high performance computing (HPC). Even

then, the computing and software system would need to

be set up very carefully in order to ensure that data

transfer to/from the cloud or HPC was fast enough and

enough processing power was utilized that the turnaround

time for the simulation of hundreds of thousands of BEM

was reasonable. This is one of the reasons for using the

reduced order ISOmodel in the coupling to UrbanSim.

The ISOmodel runs extremely fast, on the 10 milliseconds

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

525

for each building model. The largest fraction of that time

currently binvolves reading the weather file and BEM

input file from disk and writing output data to disk in

readable CSV format.

To further improve the speed for this particular

integration the C++ ISOmodel could be modified to

utilize a fast binary file format such as HDF5 (already

used natively by UrbanSim) or Feathers (McKinney

2016), a new and very fast data frame storage format

designed for interchange between Python, R, and C++.

Then the entire set of BEM inputs could be passed to the

ISOmodel as a single binary file and the ISOmodel would

read it and the weather data file only once, loop through

the entire array of inputs, and generate a single binary

output file with all the output data.

Model Validation

One of the most important aspects of developing such a

modeling mechanism is validation of the model. When

using UrbanSim to generate predictions of future real-

estate development, there are no data to use for

calibration. However, UrbanSim does use some existing

data about a city as the starting point for the future

predictions and those existing data can be analyzed as one

type of validation of the model.

The two main components of this exercise have been

previously validated. UrbanSim validation can be found

in Waddell et al. 2002. Validation of the ISOmodel

through comparison to EnergyPlus can be found in

Guzowski et al. 2014. Because there is no interaction

between the models yet, (i.e. the energy use computed

with the ISOmodel is not yet fed back into UrbanSim as

an input that affects building prices), there was no

compelling need for validation of the combined model.

Validation of the combined model is planned for the

future using some of the building energy data used by the

aforementioned CityBES project along with one of the

more detailed San Francisco UrbanSim models.

Example: San Francisco

The UrbanSim developers have an example data set

developed from real data for the city of San Francisco.

These data are available for download from the UrbanSim

GitHub repository. This is not a complete set of the San

Francisco building stock and data have been anonymized

to avoid privacy issues and thus these data are not

appropriate for a validation. However, the data are a fair

statistical representation of the building stock of San

Francisco fairly well and can be used to illustrate the

coupling of the models.

The data set includes over 113,000 individual buildings,

most of which are residential or primarily residential. The

data set defines 14 unique building types: three

residential, two office, one hotel, one school, three

industrial, two retail, one mixed residential, and one

mixed office, but details about the individual types are

lacking, so the exact mapping of a building type in

UrbanSim to a specific building type and default set of

inputs (i.e. a specific reference building) has great

uncertainty. As a result, for this example, the authors have

used a set of default data from the DOE reference building

set rather than a set of reference buildings specifically

derived for San Francisco because the purpose of the

exercise was to show the utility of the integration rather

than generate true actionable information for an urban

planner.

Once the data generated by UrbanSim or the ISOmodel

have been read into Pandas data frames in Python,

manipulation of those data is fairly simple. The data frame

generated by the ISOmodel includes the set of monthly

EUI for all the end use categories for all 113,000

buildings. Using Pandas, the total yearly EUI for each

building, summed over all categories, can be obtained

with a single command.

An example of the statistical information that is easily

obtained from the simulation is shown in Table 2. Simple

statistics including mean, standard deviation, min, and

max in additional to quartile statistics are obtained with

the two Pandas data frame commands mentioned earlier.

Table 2: Statistics generated by project scripts from the

UrbanSim San Francisco example data.

Statistic EUI (kWh/m2)

Mean 304

Standard Deviation 92

Min 72

5% Quartile 175

25% Quartile 242

50% Quartile 294

75% Quartile 354

95% Quartile 465

Max 998

Another typical analysis a researcher or planner may want

to do is to generate a histogram of the building energy use

intensities (EUIs). Again, using Pandas, a probability

normalized histogram can be generated and plotted like

the one shown in Figure 3 in a single line of Python code

as described earlier.

When the data frame containing the individual building

EUIs is read back into UrbanSim and added to the existing

data tables of the program, the 3D visualization

capabilities that are being developed in conjunction with

UrbanSim will be able to be used for better visualization

of building energy data. Figure 4 below is an example of

the sort of false color plot that could be generated from

UrbanSim. Such a plot could be generated where the color

is related to the EUI or total energy use of the building.

The color in Figure 4 is related to the year of construction.

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

526

Figure 3: Probability histogram from the output of the

San Francisco example data supplied with UrbanSim.

As the UrbanSim simulation is run and the data set

evolves, the change in the total city EUI, or categorical

EUI or even building-by-building EUI could be

computed.

Figure 4: False color plot showing projection of

building related data on a 3D map of San Francisco.

Future Work

The Python scripts for extracting building data,

generating BEM input files, running the BEM, reading the

BEM outputs and doing basic analysis will soon be

released as an open source software package on the

Argonne National Laboratory GitHub site (ANL 2017b).

But, there is still much work to be done to further integrate

the ISOmodel with UrbanSim. Perhaps the most

important follow-on work is to make the modifications to

UrbanSim to utilize the energy use data and the associated

energy costs in the decision logic of UrbanSim,

particularly the Residence and Employment Location

Module and the Real Estate Development Modules.

The authors plan on modifying the ISOmodel C++ code

to accept an energy model passed as a memory object

from Python and to return computation results as a

memory object to Python to speed the simulations

significantly.

As the 3D visualization capabilities of UrbanSim are

extended, another important future extension is to ensure

that the data generated by the BEM are added back to

UrbanSim in such a manner as to make it accessible by

the UrbanSim 3D visualization modules. A third

important follow-on project would be to implement data

exchange between UrbanSim and the ISOmodel using

data frames and a fast file format such as HDF5 or Feather

as described earlier rather than individual input and output

files utilizing CSV format.

Conclusion

This paper has discussed the first steps at integration of

the Argonne ISOmodel, a reduced order building energy

model, with the UrbanSim urban dynamic modeling

software. UrbanSim is used to generate information about

the changing building stock including locations, types,

and occupancy of buildings within a city. Python scripts

are used to extract the useful building information from

UrbanSim and generate inputs the ISOmodel BEM and

run the energy model on a building-by-building basis. The

resulting BEM outputs are saved and read back into

Python data frames where the data can be aggregated and

statistically analyzed and put back into UrbanSim for

further use by UrbanSim.

Acknowledgements

The submitted manuscript has been created by UChicago

Argonne, LLC, Operator of Argonne National Laboratory

(“Argonne”). Argonne, a U.S. Department of Energy

Office of Science laboratory, is operated under Contract

No. DE-AC02-06CH11357. The U.S. Government

retains for itself, and others acting on its behalf, a paid-up

nonexclusive, irrevocable worldwide license in said

article to reproduce, prepare derivative works, distribute

copies to the public, and perform publicly and display

publicly, by or on behalf of the Government

The authors also wish to thank the developers of

UrbanSim and Pandas for their outstanding contributions

to the research community and for their ongoing

development and free release of UrbanSim and Pandas.

References

ANL. 2017a. “Argonne National Laboratory GitHub

UrbanSim-Isomodel Repository”, Accessed May 9.

https://github.com/Argonne-National-

Laboratory/ISOmodel

ANL. 2017b. “Argonne National Laboratory GitHub

UrbanSim-Isomodel Repository”, Accessed May 9.

https://github.com/Argonne-National-Laboratory/

urbansim-isomodel

Cerezo Davila, Carlos, Christoph F. Reinhart, and Jamie

L. Bemis. 2016. “Modeling Boston: A Workflow for

the Efficient Generation and Maintenance of Urban

Building Energy Models from Existing Geospatial

Datasets.” Energy 117, Part 1 (December): 237–50.

Chu, S. and A. Majumdar. 2012. Opportunities and

challenges for a sustainable energy future. Nature

488, 294–303.

Guglielmetti, Rob, Dan Macumber, and Nicholas Long.

2011. “OpenStudio: An Open Source Integrated

https://github.com/Argonne-National-Laboratory/ISOmodel
https://github.com/Argonne-National-Laboratory/ISOmodel
https://github.com/Argonne-National-Laboratory/%20urbansim-isomodel
https://github.com/Argonne-National-Laboratory/%20urbansim-isomodel

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

527

Analysis Platform.” In Proceedings of the 12th

Conference of International Building Performance

Simulation Association.

Guzowski, Leah B, D. J Graziano, Y. Heo, and R. T

Muehleisen. 2012. “Testing a Streamlined Project

Evaluation Tool for Risk-Conscious Decision

Making: The Chicago Loop Energy Efficiency

Retrofit Initiative.” In 2012 ACEEE Summer Study

on Energy Efficiency in Buildings, 139–51.

ACEEE.

Guzowski, Leah B, Ralph T Muehleisen, Yeonsook Heo,

and Diane J. Graziano. 2014. “Comparative

Analysis for the Chicago Energy Retrofit Project.”

ANL Report: ANL/DIS-14/2. Argonne National

Laboratory.

Hong, Tianzhen, Yixing Chen, Sang Hoon Lee, and Mary

Ann Piette. 2016. “CityBES: A Web-Based

Platform to Support City-Scale Building Energy

Efficiency.” In 5th International Workshop on

Urban Computation (UrbComp 2016).

Hunter, J. D. 2007. “Matplotlib: A 2D Graphics

Environment.” Computing in Science Engineering 9

(3): 90–95.

McKinney, Wes. 2010. “Data Structures for Statistical

Computing in Python.” In Proceedings of the 9th

Python in Science Conference, 445:51–56.

McKinney, Wes. 2016. “Feather: fast, interoperable

binary data frame storage for Python, R, and more

powered by Apache Arrow”. Last accessed 14-Dec-

2016. https://github.com/wesm/feather .

Muehleisen, Ralph T, Brian Craig, Daniel Macumber,

Elaine Hale, and Jason Turner. 2014. “Integration of

the CEN/ISO Monthly Building Energy Model into

OpenStudio.” In ACEEE Summer Study on Energy

Efficiency in Buildings. 247-259. ACEEE.

Muehleisen, Ralph T., Joshua Bergerson, Nicholson

Collier, Diane J. Graziano, and Eric Tatara. 2016.

“Agent Based Technology Adoption Model for

Program Planning and Design.” In ACEEE Summer

Study on Energy Efficiency in Buildings 2016.

Waddell, Paul., A. Borning, M. Noth, N. Freier, M.

Becke, and G. Ulfarsson. 2002. “UrbanSim: A

Simulation System for Land Use and

Transportation.” Networks and Spatial Economics 3

(43–67).

Waddell, Paul. A. 2016. “UrbanSim Readme”. Last

Accessed 14-Dec-2016.

https://github.com/UDST/urbansim/blob/master/R

EADME.rst

World Bank. 2017. “Urban Development Overview.”

Accessed May 1. http://www.worldbank.org/en/

topic/urbandevelopment/overview

Zhao, Fei, Ignacio J. Martinez-Moyano, and Godfried

Augenbroe. 2011. “Agent-Based Modeling of

Commercial Building Stocks for Policy Support.” In

Building Simulation 2011, 2385–92. IBPSA.

https://github.com/wesm/feather
https://github.com/UDST/urbansim/blob/master/README.rst
https://github.com/UDST/urbansim/blob/master/README.rst
http://www.worldbank.org/en/%20topic/urbandevelopment/overview
http://www.worldbank.org/en/%20topic/urbandevelopment/overview

