‘ BUILDING
SIMULATION 2017

INTERNATIONAL
BUILDING
PERFORMANCE
SIMULATION

[ ASSOCIATION

COMPONENT-BASED MACHINE LEARNING MODELLING APPROACH FOR DESIGN
STAGE BUILDING ENERGY PREDICTION: WEATHER CONDITIONS AND SIZE

Sundaravelpandian Singaravel, Philipp Geyer', Johan Suykens?
!Architectural Engineering Division, KU Leuven, Belgium
2ESAT-STADIUS, KU Leuven, Belgium
sundar.singaravel@kuleuven.be

Abstract

Building energy predictions are playing an important role
in steering the design towards the required sustainability
regulations. Time-consuming nature of detailed Building
Energy Modelling (BEM) has introduced simplified BEM
and metamodels within the design process. The paper
further elaborates the limitations of this method and
proposes a component-based Machine Learning
Modelling (MLM) approach which could potentially
overcome the current limitations.

The paper proposes a methodology for developing
component-based MLM  that  generalise  well.
Generalisation, in this paper, refers to the reusability of an
MLM developed with data from a specific situation in
similar circumstances. As a first step in ongoing research
on component-based MLM, a model is developed with
data from a simple box building with weather data of
Amsterdam, Brussels and Paris and two occupancy
profiles. It is shown that the MLM is able to predict the
annual energy for (1) same box building under different
weather conditions not included in the training data (2)
different dimensions of the box building for one case
weather data and occupancy. The prediction error for
annual heating demand is lower than 10% for all
evaluated cases while the prediction error for annual
cooling demand ranges -3.4% to 28.3%. Good
generalisation is observed for all heating energy
predictions whereas only for a few cooling energy
predictions. Possibilities for model improvement and next
steps of the research project are described.

Introduction

Typically, Building Energy Models (BEM) evaluate the
performance of a building design upon completion.
Stringent sustainability requirements created a need for
the use of BEM during early design stages. However,
detailed BEM is time-consuming for early design, while
simplified BEM could result in prediction gap (Singaravel
& Geyer, 2016). Limitations of current simple BEM is; it
typically focuses on a specific BEM area with
simplification in other model areas. For example,
simplified BEM to explore architectural elements usually
have simplified HVAC (Heating, Ventilation and Air
Conditioning) model (Miyamoto, et al., 2016). Resulting
in limited cross-discipline interactions during early

design. This is due to its time-consuming nature and lack
of energy modelling experts at early design stage.

The need for having models with high accuracy and low
computation time is increasing with our need to evaluate
many design options at the early design stage and caused
by the increasing complexity of the sustainable building.
Metamodels developed with BEM results provide a
flexible workflow; a simple input structure for obtaining
curtailed information contained within a simulation
model is ideal for early building design (Henry, et al.,
2016). Metamodels also have high calculation speed
suitable for early design (Van Gelder, et al., 2014). A
simple method of this category is the Response Surface
Method (Box & Draper, 2007). Such surrogate models
were used to represent energy simulation results as well
as to monitor real performance exceeding the thermal
behaviour of buildings (Chlela, et al., 2009, Jaffal, et al.,
2009, Catalina, et al., 2013, Geyer & Schliiter, 2014).

Machine Learning Models (MLMs) extends this potential
with large and diverse datasets, which is not only valuable
for building design but also for building stock
management. Artificial Neural Networks (ANN) serves to
model building performance, which is time-series
prediction of energy consumption, in many studies (e.g.,
Neto & Fiorelli, 2008, Ekici & Aksoy, 2009, Gao, et al.,
2010, Ahmed, et al., 2011, 2011a, Stavrakakis, et al.,
2012, Kusiak & Xu, 2012, Catalina, et al., 2008, Naji, et
al., 2016). Support Vector Regression (SVR)—another
machine learning method— is also frequently used (e.g.,
Li, et al., 2009, de Wilde, et al., 2013, Jain, et al., 2014).
Simpson, et al. (2001), Ashtiani, et al. (2014) and Wei, et
al. (2015) compare methods of surrogate modelling,
partly in the context of the built environment. Yang, et al.
(2005) and Moon (2012) propose models that adapt
during prediction. Furthermore, due to reduced
computation times, metamodeling has been exploited for
optimisation of buildings (e.g., Eisenhower, et al., 2012,
Ekren & Ekren, 2008, Zhang, et al., 2012).

Another growing trend is the availability of wide variety
of data, ranging from time series data (example:
monitoring houses for the IEA EBC Annex 58, Strachan,
et al., 2015) to point estimates from project databases of
government or sustainability certification bodies like
LEED (Leadership in Energy and Environmental Design).
The available data is useful for a design decision. Current
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machine learning/metamodelling approach limits the use
of wide variety of data. Time series approaches include
prediction on historical data. The time element present
within these methods is similar to dynamic annual energy
simulations. Typically, machine learning models
developed today are using point estimate data such as
annual energy consumption. The limitations of current
approach are (1) the inability to quantify the contribution
of a design element on the energy prediction and the
support of respective engineering reasoning for
improving the design and (2) incorporate available
interesting time series data like the IEA EBC Annex 58
monitoring data (Strachan, et al., 2015) which could
support design stages to achieve more accurate
predictions.

To overcome the limitations presented above, a
component-based approach for MLMs is proposed, which
offers the following benefits compared to current MLM:

- Ability to quantify the contribution/effect of a
design element on the energy prediction;

- Applicability in new situations of building design
which opens the possibility of reusable MLM;

- Have a modular nature which is suitable for applying
in the building design, especially linked to building
information modelling (BIM).

This paper elaborates first findings in terms of the
feasibility of a component-based MLM performance
prediction in early design phases. For that purpose, a
MLM for a simple box building is examined for its
generalization in terms of weather conditions and
different building dimensions. This experiment examines
the feasibility of a method to elaborated on more complex
situations in future and provides indication of feasibility
but no complete proof-of-concept. The paper is structured
in the following manner:

- Proposed method for development of component-
based MLM

- Case-based development and
component-based MLM

evaluation of

- Discussions and conclusions

Proposed method for development of
component-based MLM

Based on several tests the method outlined in this section

has been developed. This method is domain-neutral,

which means that it can also be applied to other types of
building performance simulation, such as daylighting
analysis, where computation time is high.

Component-based MLM is developed through the

following steps:

1. Identification of the performance parameters to
be estimated. Example: Energy performance of a
building design.

2.  Decomposition of a calculation methodology to
identify the required model structure.

3. Data collection. Data source can be simulations or
monitoring data from sensors or statistical data or

other data sources. Before using in the following
steps, proper data cleaning and transformation must
be applied.

4. Input parameter (or feature) selection using
engineering knowledge, statistical and feature
selection methods for effective generalisation and to
observe all the required interactions.

5. Train, cross-validate and test component MLM.
For the selected ML algorithm after training, cross-
validation and testing are required to identify the
need for more training data or input parameters or
MLM tuning and to evaluate generalisation.

6. Use of component-based MLM to steer the design

towards the  requirements/objectives  either
interactively or supported by search algorithms.

Case-based development and evaluation of
component-based MLM

Development of Component-Based MLM structure

The objective of this section is to identify a model
structure for the component-based MLM approach that
could highlight its potential. A simple building energy
calculation method is decomposed to understand the
parameters and energy flow within a calculation method.
Equation 1 shows a formula used to estimate the heating
load of a building.

QHeating = Qt + Qinf + Qv - Qsol - roc - Qapl 1

This equation indicates the basic model structure required
to estimate the heating load of a building, which consist
of the following components:

1. Losses through transmission (Q;) and infiltration
(Qiny)

2. Ventilation load (Q,)

3. Gains through solar irradiation (Qs.), occupancy
(Qoce) and appliances (Qupi).
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Figure 1 Structure of component-based MLM

Based on Equation 1, the component structure for MLM
is developed (as shown in Figure 1), which estimates heat
gains and losses through wall, floor, roof, windows and
infiltration. Since the main objective of the study is to
present a component-based MLM approach, ventilation
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load and appliances gain are neglected and ideal HVAC
efficiency is used for this study.

The outputs of sub-MLMs are used to aggregate the
annual building heating load. Heating energy demand is
estimated by adding the hourly heating load at indoor
heating set-point. Similarly, an equivalent equation can be
used to derive cooling load which is in turn used to
estimate cooling energy. Note that the component MLM
for the wall, floor, roof, windows and infiltration
estimates both transient heat- gain and loss, which are
used to aggregate the heating and cooling energy
demands.

Input parameters for the components are selected based
on physical equations in combination with domain
knowledge on factors which influence heat gain and loss.
Figure 2 shows the input and output for each MLM
components.

Inputs MLM Component Output Final estimation

Window he"‘"""‘?‘” )
2. Global Conduction a::sas'" o

3. Indoor \
temperature Window Window
4. Occupancy Solar Gain Solar Gain
Energy
(I Ambient | Floor

Floor heat 7\ DBemand
gain of loss

Roof heat
gain of loss

Infiltration
heat gain of
loss

speed
4. Wind
direction

Figure 2 Input and output structure within the
component-based MLM

In this paper, generalisation refers to model reusability in
similar conditions to the data used in its development.
This gives an indication on the expected performance of
the model on similar unseen or new data. Further research
is required to understand or standardise the conditions for
evaluation of MLM generalisation. Since the main
objective of the paper is to present a methodology for
developing component-based MLM, the test case is
limited to two situation.

Evaluation of MLM generalisation is performed by
changing the model’s location and dimensions. Hence,
building properties shown in Table 1 remain constant
within the study. Therefore, they are not included as
model inputs. The inclusion of these parameters within
the model should increase MLLM’s generalisation, which
will be evaluated in future research and is not covered in
this paper.

Data collection

Training data for the identified input and output
parameters is obtained for a simple box building located
in Amsterdam, Brussels, Paris with- and without
occupancy using parametric BEM. 10% of the training
data (selected randomly) is kept aside to evaluate and to

refine the performance of MLM. This data is referred as
cross-validation data.

Data is also collected from (1) the same building model
located in London with- and without occupancy, occupied
between 8:00 to 18:00 (2) different dimensions of the box
building located in Brussels with 100% occupancy. This
data is used to test the generalisation of component-based
MLM. In this paper, occupant behaviour is just the
presence (100% occupancy) and absence (0% occupancy)
of occupants; no other interactions are considered.

Description of BEM model

A simple box building model is developed in IES VE. The
geometry of the building is based on BESTEST Case 600
(see Figure 3). Table 1 shows the properties of the
building characteristics used within the energy model. In
this model, ideal efficiencies of HVAC system are used,
i.e., building heating and cooling energy demand is equal
to building heating and cooling load. Furthermore,
heating and cooling profiles were set to ‘on continuously’.

Table 1 Building characteristics

Description Properties
3 U-Value:
Wall Area: 64.2 m 2
0.26 W/m'K
U-Value:
1.6 W/m'K
Window | Area: 12 m? o
g-value:
0.4
3 U-Value:
Floor Area: 48.8 m 2
0.22 W/m'K
U-Value:
Roof Area: 48.8 m* 5
0.18 W/m'K
Density: Sensible:
10 m?) 90 W/
Occupancy e 3
Latent:
60 W/pp
Airtightness |0.25 ach
§
|
60m g
80m s 27m
05m] /N'
A A
20m 20m
__ 30m B 30m L
02mX A
— —
05m 10m

Figure 3 Geometry of the simple box building (Hopfe, et
al., 2007)

Description of training data

Climate data obtained from Amsterdam, Brussels and
Paris are used to train the MLMSs. Figure 4 and Figure 5
show the frequency distribution of the weather and heat
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gain data used to train and cross-validate the MLMs.
Description of weather data is as following:
- Average dry-bulb temperature is 10.5°C with a
maximum of 35°C and a minimum of -9.1°C
- Average global radiation is 113.5 W/m’? with a
maximum of 902.5 W/m?. However, majority of the
time a global radiation of 7 W/m? (inferred through
the median) is observed
- Average wind speed is 4.6 m/s with a maximum of
22 m/s
- Predominant wind direction is between 210 to 240.

The indoor temperature and occupancy gains are also
acquired for each simulation time step. Indoor
temperature ranges between 20°C and 25°C, boundaries
of the indoor temperature range also correspond to
heating and cooling set points. Occupant gains alter

between 0 and 100%.
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Figure 4 Histogram of training weather data (inputs)
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Figure 5 Histogram of training heat gain and loss data
(output)

From Figure 5, the following can be noted:

- Training data predominantly consist of heat loss
through the building envelope, and heat gain is less.
However, the occurrence of extreme heat losses within
the dataset is low.

- Heat conduction through the window, wall and
infiltration gain are (approx.) normally distributed

while the distribution is skewed for other building
elements.

Description of test data

In this paper, training data is generated by varying
weather data only. Hence, the model should generalise if
the test data is within the distribution of the training data.
Test data is generated from (1) London weather (with- and
without occupancy, occupied between 8:00 to 18:00) and
(2) different dimensions of the box model with Brussels
weather (always occupied), to evaluate generalisation.
For this paper, energy is predicted for different
dimensions by scaling the MLM output values. Scaling is
the process of converting MLM response value into
values per meter square or cube and multiplying it with
appropriate dimensions. For instance, infiltration gain is
divided by volume of base dimension model and
multiplied by volume of corresponding cases. Table 2
shows the dimensions used to test validity of model for
cases ranging up to five times the floor area.

It is required that weather conditions and building
envelope heat loss characteristics are similar to the
training data set. Otherwise, resulting model performance
will not be good. Furthermore, it is not required that the
same combination of input and response values which
occur in the test data be present in the training dataset.

Table 2 Evaluated dimensions for model validation

Base

dimensions |Case 1 Case 2 Case 3
Volume (ml) 131.7 191.5 343.6 652.8
Floor (m’) 487 70.9 1273 | 2418
Roof (m?) 48.7 70.9 1273 241.8
External wall (mz) 64.2 75.4 100.8 1374
Window area (m®) 12.0 17.0 24.0 36.0
Occ gain (kW) 0.4 0.6 11 | 22

Selection of ML algorithm and features

Model variations can be obtained by modifying the model
structure (example: neural network with 5 or 10 hidden
units) or by using different ML algorithms. The
performance of an algorithm or model structure depends
on the dataset (Alpaydin, 2010). The selection of ML
algorithm and final features/inputs is done through
evaluation of coefficient of determination (R?) on cross-
validation data. The method for selecting of ML algorithm
and features are as follows:

- Selecting ML algorithm which has the highest cross-
validation R? for all or majority of the component
dataset

- Selecting features/input parameters (if required), to
improve MLM performance

- Tuning of hyperparameters,
model’s performance.

Selection of ML algorithm

The MLM used in this study are modeled in Python using

scikit-learn library (Pedregosa, et al., 2011). The

algorithms evaluated are briefly explained in this section,

to further improve
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followed by identification of the algorithm used to model

components. The ML algorithms for regression assessed

in this paper are:

- Random Forest (RF) developed based on the concept
of regression tree which splits training data based on
variable into a tree structure. Single trees are not
sufficient to develop a good regression model. Hence
a group of regression trees are developed for
predictions (Ma & Cheng, 2016). The predictions of
each tree model within RF algorithm is averaged
based on the probability of the prediction, to obtain a
final prediction (Pedregosa, et al., 2011). The
hyperparameter (default) values used to train an RF
model are:

Number of trees: 10
Measure of quality: Mean Squared Error
Max features: Equal to number of features

1
2
3
4.  Minimum sample split: 2
5. Minimum sample leaf: 1
6

Bootstrap: True

- Extremely Randomized Trees (ERT) is developed
based on an ensemble of regression trees. The main
difference between ERT and other tree methods is that
the splits node is chosen randomly and the entire
training data is used for developing the tree (Geurts, et
al., 2006). Hyperparameter (default) values used to
train an ERT model are same as those of RF except
bootstrap which is False.

- K-Nearest Neighbors (k-NN) regressor learning
centers k-nearest neighbors for each examination
point. K-most similar value located within training
data and weight function are used for predictions.
Hyperparameter (default) values used to train k-NN
models are:

1. Number of neighbors: 6
2. Weights: Uniform

- Multi-Layer Perceptron (MLP) is a feedforward
neural network with one or more hidden units. MLP
can learn non-linear function approximates for a set of
input and output values (Cigizoglu, 2004).
Hyperparameters used to train MLP models are:

1. Number of hidden layer: 1
2. Number of units in a hidden layer: 50
3. Activation: Rectified linear unit function

Table 3 shows component-wise R? for training and cross-
validation data for each ML algorithm and MLM
component. From this table, it can be observed that all ML
algorithms perform similarly on cross-validation data.
This may not be the situation once the quantity or the
nature of data changes. Furthermore, it can be noted that
RF and ERT have lower cross-validation R? compared to
their training R2. This indicates that overfitting of data is
taking place. For this study, ML algorithm which has the
highest overall R? on cross-validation data is used. RF has
high cross-validation R? for the majority of the

component dataset. Hence, all components are modelled
with this algorithm.

Table 3 Coefficient of determination (R2) with training
and cross-validation data for different ML algorithm

Coefficient of Determination (R*2)
RF ERT k-NN MLP
Component Cross- I Cross Cross- T Cross-
MLM Training ms% Training 0S| Train ng 955 | Trainin g 5
validation validation validation validation
data data data data
data data data data
Wall 0.9132 | 0.5593 | 0.9876 | 0.5333 | 0.6717 | 0.5526 | 0.5473 | 0.5496
Window - |, 9035 | 00741 | 0.9977 | 09716 | 0.9771 | 09693 | 0.9693 | 0.9702
Conduction L
Window - | 9757 | 08652 | 1.0000 | 08610 | 0.8705 | 0.8267 | 0.8050 | 0.8096
Solar gain

Floor | 0.9166 | 0.7185 | 0.9589 | 0.7173 | 0.7740 | 0.7101 | 07020 | 0.7109
Roof | 0.9083 | 0.7261 | 0.9458 | 0.7254 | 0.7826 | 0.7273 | 07227 | 0.7376
Infiltration | 0.9983 [ 09926 | 0.9995 | 0.9926 | 0.9899 | 0.9865 | 0.9915 | 0.9919

Selection of features/input parameters

Investigation on the reason for low cross-validation R? for
the wall, window solar gain, floor and roof indicated that
sufficient features or input parameters were not present to
map all heat gains and losses accurately on new or unseen
data. Hence, feature selection exercise is performed only
for these components.

Additional inputs to the MLM components is selected by
analyzing the correlation observed within the training data
collected from Amsterdam, Brussels and Paris BEM.
Figure 6 shows the correlation between independent and
dependent parameters from the parametric BEM,
clustered as heat map matrix. The heat map indicates the
following:

- Solar azimuth has a strong correlation with
conduction through the wall and, in contrast, a weak
correlation with conduction through the floor and
the roof and solar gain through window;

- Solar altitude has a strong correlation with
conduction through floor and roof and with solar
gain through the window and a weak correlation
with conduction through the walls.

Since, correlation only indicates the presence of a linear
relationship, while the presence of a non-linear
relationship as well as causal relation could not be ruled
out. Thus, a further engineering interpretation is required
to select parameters. Because of this interpretation, both
solar azimuth and solar altitude are incorporated within
the models. Additional inputs/features have improved
cross-validation R? for all the components (see Table 4)
on an average, by 23% from the previous case.

Table 4 Increase in R2 through feature selection and
tuning of hyperparameter
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R"2 with Cross-validation data
Component ML Feature Performance
MLM algorithm | Baseline u Tuning increase
select
Wall | RF | 05593 | 09424 | 09476 [ 41.0%
Window - RF 0.9741 09755 0.1%
Conduction
Window - Selar 0.8652 | 09626 | 0.9655 10.4%
gﬂl[l
Floor RF 0.7185 | 09236 | 0.9303 22.8%
Roof RF 0.7261 0.9136 0.9229 21.3%
Infiltration RF 0.9926 0.9932 0.1%
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