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Abstract 

Building energy predictions are playing an important role 
in steering the design towards the required sustainability 
regulations. Time-consuming nature of detailed Building 
Energy Modelling (BEM) has introduced simplified BEM 
and metamodels within the design process. The paper 
further elaborates the limitations of this method and 
proposes a component-based Machine Learning 
Modelling (MLM) approach which could potentially 
overcome the current limitations.  

The paper proposes a methodology for developing 
component-based MLM that generalise well. 
Generalisation, in this paper, refers to the reusability of an 
MLM developed with data from a specific situation in 
similar circumstances. As a first step in ongoing research 
on component-based MLM, a model is developed with 
data from a simple box building with weather data of 
Amsterdam, Brussels and Paris and two occupancy 
profiles. It is shown that the MLM is able to predict the 
annual energy for (1) same box building under different 
weather conditions not included in the training data (2) 
different dimensions of the box building for one case 
weather data and occupancy. The prediction error for 
annual heating demand is lower than 10% for all 
evaluated cases while the prediction error for annual 
cooling demand ranges -3.4% to 28.3%. Good 
generalisation is observed for all heating energy 
predictions whereas only for a few cooling energy 
predictions. Possibilities for model improvement and next 
steps of the research project are described.  

Introduction 
Typically, Building Energy Models (BEM) evaluate the 
performance of a building design upon completion. 
Stringent sustainability requirements created a need for 
the use of BEM during early design stages. However, 
detailed BEM is time-consuming for early design, while 
simplified BEM could result in prediction gap (Singaravel 
& Geyer, 2016). Limitations of current simple BEM is; it 
typically focuses on a specific BEM area with 
simplification in other model areas. For example, 
simplified BEM to explore architectural elements usually 
have simplified HVAC (Heating, Ventilation and Air 
Conditioning) model (Miyamoto, et al., 2016). Resulting 
in limited cross-discipline interactions during early 

design. This is due to its time-consuming nature and lack 
of energy modelling experts at early design stage. 

The need for having models with high accuracy and low 
computation time is increasing with our need to evaluate 
many design options at the early design stage and caused 
by the increasing complexity of the sustainable building. 
Metamodels developed with BEM results provide a 
flexible workflow; a simple input structure for obtaining 
curtailed information contained within a simulation 
model is ideal for early building design (Henry, et al., 
2016). Metamodels also have high calculation speed 
suitable for early design (Van Gelder, et al., 2014). A 
simple method of this category is the Response Surface 
Method (Box & Draper, 2007). Such surrogate models 
were used to represent energy simulation results as well 
as to monitor real performance exceeding the thermal 
behaviour of buildings (Chlela, et al., 2009, Jaffal, et al., 
2009, Catalina, et al., 2013, Geyer & Schlüter, 2014). 

Machine Learning Models (MLMs) extends this potential 
with large and diverse datasets, which is not only valuable 
for building design but also for building stock 
management. Artificial Neural Networks (ANN) serves to 
model building performance, which is time-series 
prediction of energy consumption, in many studies (e.g., 
Neto & Fiorelli, 2008, Ekici & Aksoy, 2009, Gao, et al., 
2010, Ahmed, et al., 2011, 2011a, Stavrakakis, et al., 
2012, Kusiak & Xu, 2012, Catalina, et al., 2008, Naji, et 
al., 2016). Support Vector Regression (SVR) another 
machine learning method  is also frequently used (e.g., 
Li, et al., 2009, de Wilde, et al., 2013, Jain, et al., 2014). 
Simpson, et al. (2001), Ashtiani, et al. (2014) and Wei, et 
al. (2015) compare methods of surrogate modelling, 
partly in the context of the built environment. Yang, et al. 
(2005) and Moon (2012) propose models that adapt 
during prediction. Furthermore, due to reduced 
computation times, metamodeling has been exploited for 
optimisation of buildings (e.g., Eisenhower, et al., 2012, 
Ekren & Ekren, 2008, Zhang, et al., 2012). 

Another growing trend is the availability of wide variety 
of data, ranging from time series data (example: 
monitoring houses for the IEA EBC Annex 58, Strachan, 
et al., 2015) to point estimates from project databases of 
government or sustainability certification bodies like 
LEED (Leadership in Energy and Environmental Design). 
The available data is useful for a design decision. Current 
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machine learning/metamodelling approach limits the use 
of wide variety of data. Time series approaches include 
prediction on historical data. The time element present 
within these methods is similar to dynamic annual energy 
simulations. Typically, machine learning models 
developed today are using point estimate data such as 
annual energy consumption. The limitations of current 
approach are (1) the inability to quantify the contribution 
of a design element on the energy prediction and the 
support of respective engineering reasoning for 
improving the design and (2) incorporate available 
interesting time series data like the IEA EBC Annex 58 
monitoring data (Strachan, et al., 2015) which could 
support design stages to achieve more accurate 
predictions. 

To overcome the limitations presented above, a 
component-based approach for MLMs is proposed, which 
offers the following benefits compared to current MLM:  

- Ability to quantify the contribution/effect of a 
design element on the energy prediction; 

- Applicability in new situations of building design 
which opens the possibility of reusable MLM; 

- Have a modular nature which is suitable for applying 
in the building design, especially linked to building 
information modelling (BIM). 

This paper elaborates first findings in terms of the 
feasibility of a component-based MLM performance 
prediction in early design phases. For that purpose, a 
MLM for a simple box building is examined for its 
generalization in terms of weather conditions and 
different building dimensions. This experiment examines 
the feasibility of a method to elaborated on more complex 
situations in future and provides indication of feasibility 
but no complete proof-of-concept. The paper is structured 
in the following manner: 

- Proposed method for development of component-
based MLM 

- Case-based development and evaluation of 
component-based MLM 

- Discussions and conclusions  

Proposed method for development of 
component-based MLM   
Based on several tests the method outlined in this section 
has been developed. This method is domain-neutral, 
which means that it can also be applied to other types of 
building performance simulation, such as daylighting 
analysis, where computation time is high.  

Component-based MLM is developed through the 
following steps:  

1. Identification of the performance parameters to 
be estimated. Example: Energy performance of a 
building design.  

2. Decomposition of a calculation methodology to 
identify the required model structure. 

3. Data collection. Data source can be simulations or 
monitoring data from sensors or statistical data or 

other data sources. Before using in the following 
steps, proper data cleaning and transformation must 
be applied.  

4. Input parameter (or feature) selection using 
engineering knowledge, statistical and feature 
selection methods for effective generalisation and to 
observe all the required interactions. 

5. Train, cross-validate and test component MLM. 
For the selected ML algorithm after training, cross-
validation and testing are required to identify the 
need for more training data or input parameters or 
MLM tuning and to evaluate generalisation. 

6. Use of component-based MLM to steer the design 
towards the requirements/objectives either 
interactively or supported by search algorithms. 

Case-based development and evaluation of 
component-based MLM  

Development of Component-Based MLM structure  

The objective of this section is to identify a model 
structure for the component-based MLM approach that 
could highlight its potential. A simple building energy 
calculation method is decomposed to understand the 
parameters and energy flow within a calculation method. 
Equation 1 shows a formula used to estimate the heating 
load of a building. 

 

(1) 

 

This equation indicates the basic model structure required 
to estimate the heating load of a building, which consist 
of the following components: 

1. Losses through transmission (Qt) and infiltration 
(Qinf) 

2. Ventilation load (Qv) 

3. Gains through solar irradiation (Qsol), occupancy 
(Qocc) and appliances (Qapl). 

 

 
Figure 1 Structure of component-based MLM 

Based on Equation 1, the component structure for MLM 
is developed (as shown in Figure 1), which estimates heat 
gains and losses through wall, floor, roof, windows and 
infiltration. Since the main objective of the study is to 
present a component-based MLM approach, ventilation 
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load and appliances gain are neglected and ideal HVAC 
efficiency is used for this study. 

The outputs of sub-MLMs are used to aggregate the 
annual building heating load. Heating energy demand is 
estimated by adding the hourly heating load at indoor 
heating set-point. Similarly, an equivalent equation can be 
used to derive cooling load which is in turn used to 
estimate cooling energy. Note that the component MLM 
for the wall, floor, roof, windows and infiltration 
estimates both transient heat- gain and loss, which are 
used to aggregate the heating and cooling energy 
demands. 

Input parameters for the components are selected based 
on physical equations in combination with domain 
knowledge on factors which influence heat gain and loss. 
Figure 2 shows the input and output for each MLM 
components. 

 
Figure 2 Input and output structure within the 

component-based MLM 

In this paper, generalisation refers to model reusability in 
similar conditions to the data used in its development. 
This gives an indication on the expected performance of 
the model on similar unseen or new data. Further research 
is required to understand or standardise the conditions for 
evaluation of MLM generalisation. Since the main 
objective of the paper is to present a methodology for 
developing component-based MLM, the test case is 
limited to two situation.  

Evaluation of MLM generalisation is performed by 
changing the model dimensions. Hence, 
building properties shown in Table 1 remain constant 
within the study. Therefore, they are not included as 
model inputs. The inclusion of these parameters within 

will be evaluated in future research and is not covered in 
this paper.  

Data collection 

Training data for the identified input and output 
parameters is obtained for a simple box building located 
in Amsterdam, Brussels, Paris with- and without 
occupancy using parametric BEM. 10% of the training 
data (selected randomly) is kept aside to evaluate and to 

refine the performance of MLM. This data is referred as 
cross-validation data.  

Data is also collected from (1) the same building model 
located in London with- and without occupancy, occupied 
between 8:00 to 18:00 (2) different dimensions of the box 
building located in Brussels with 100% occupancy. This 
data is used to test the generalisation of component-based 
MLM. In this paper, occupant behaviour is just the 
presence (100% occupancy) and absence (0% occupancy) 
of occupants; no other interactions are considered.  

Description of BEM model 

A simple box building model is developed in IES VE. The 
geometry of the building is based on BESTEST Case 600 
(see Figure 3). Table 1 shows the properties of the 
building characteristics used within the energy model. In 
this model, ideal efficiencies of HVAC system are used, 
i.e., building heating and cooling energy demand is equal 
to building heating and cooling load. Furthermore, 
h  

Table 1 Building characteristics 

 

 
Figure 3 Geometry of the simple box building (Hopfe, et 

al., 2007) 

Description of training data 

Climate data obtained from Amsterdam, Brussels and 
Paris are used to train the MLMs. Figure 4 and Figure 5 
show the frequency distribution of the weather and heat 
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gain data used to train and cross-validate the MLMs. 
Description of weather data is as following: 
- Average dry-bulb temperature is 10.5°C with a 

maximum of 35°C and a minimum of -9.1°C 
- Average global radiation is 113.5 W/m2 with a 

maximum of 902.5 W/m2. However, majority of the 
time a global radiation of 7 W/m2 (inferred through 
the median) is observed 

- Average wind speed is 4.6 m/s with a maximum of 
22 m/s 

- Predominant wind direction is between 210 to 240. 

The indoor temperature and occupancy gains are also 
acquired for each simulation time step. Indoor 
temperature ranges between 20°C and 25°C, boundaries 
of the indoor temperature range also correspond to 
heating and cooling set points. Occupant gains alter 
between 0 and 100%. 

 
Figure 4 Histogram of training weather data (inputs) 

 
Figure 5 Histogram of training heat gain and loss data 
(output) 

From Figure 5, the following can be noted: 
- Training data predominantly consist of heat loss 

through the building envelope, and heat gain is less. 
However, the occurrence of extreme heat losses within 
the dataset is low. 

- Heat conduction through the window, wall and 
infiltration gain are (approx.) normally distributed 

while the distribution is skewed for other building 
elements. 

Description of test data 

In this paper, training data is generated by varying 
weather data only. Hence, the model should generalise if 
the test data is within the distribution of the training data. 
Test data is generated from (1) London weather (with- and 
without occupancy, occupied between 8:00 to 18:00) and 
(2) different dimensions of the box model with Brussels 
weather (always occupied), to evaluate generalisation. 
For this paper, energy is predicted for different 
dimensions by scaling the MLM output values. Scaling is 
the process of converting MLM response value into 
values per meter square or cube and multiplying it with 
appropriate dimensions. For instance, infiltration gain is 
divided by volume of base dimension model and 
multiplied by volume of corresponding cases. Table 2 
shows the dimensions used to test validity of model for 
cases ranging up to five times the floor area.   

It is required that weather conditions and building 
envelope heat loss characteristics are similar to the 
training data set. Otherwise, resulting model performance 
will not be good. Furthermore, it is not required that the 
same combination of input and response values which 
occur in the test data be present in the training dataset.  

Table 2 Evaluated dimensions for model validation 

 

Selection of ML algorithm and features 

Model variations can be obtained by modifying the model 
structure (example: neural network with 5 or 10 hidden 
units) or by using different ML algorithms. The 
performance of an algorithm or model structure depends 
on the dataset . The selection of ML 
algorithm and final features/inputs is done through 
evaluation of coefficient of determination (R2) on cross-
validation data. The method for selecting of ML algorithm 
and features are as follows: 

- Selecting ML algorithm which has the highest cross-
validation R2 for all or majority of the component 
dataset  

- Selecting features/input parameters (if required), to 
improve MLM performance  

- Tuning of hyperparameters, to further improve 
 

Selection of ML algorithm  

The MLM used in this study are modeled in Python using 
scikit-learn library (Pedregosa, et al., 2011). The 
algorithms evaluated are briefly explained in this section, 
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followed by identification of the algorithm used to model 
components. The ML algorithms for regression assessed 
in this paper are: 

- Random Forest (RF) developed based on the concept 
of regression tree which splits training data based on 
variable into a tree structure. Single trees are not 
sufficient to develop a good regression model. Hence 
a group of regression trees are developed for 
predictions (Ma & Cheng, 2016). The predictions of 
each tree model within RF algorithm is averaged 
based on the probability of the prediction, to obtain a 
final prediction (Pedregosa, et al., 2011). The 
hyperparameter (default) values used to train an RF 
model are: 

1. Number of trees: 10 

2. Measure of quality: Mean Squared Error  

3. Max features: Equal to number of features  

4. Minimum sample split: 2 

5. Minimum sample leaf: 1 

6. Bootstrap: True 

- Extremely Randomized Trees (ERT) is developed 
based on an ensemble of regression trees. The main 
difference between ERT and other tree methods is that 
the splits node is chosen randomly and the entire 
training data is used for developing the tree (Geurts, et 
al., 2006). Hyperparameter (default) values used to 
train an ERT model are same as those of RF except 
bootstrap which is False. 

- K-Nearest Neighbors (k-NN) regressor learning 
centers k-nearest neighbors for each examination 
point. K-most similar value located within training 
data and weight function are used for predictions. 
Hyperparameter (default) values used to train k-NN 
models are: 

1. Number of neighbors: 6 

2. Weights: Uniform  

- Multi-Layer Perceptron (MLP) is a feedforward 
neural network with one or more hidden units. MLP 
can learn non-linear function approximates for a set of 
input and output values (Cigizoglu, 2004). 
Hyperparameters used to train MLP models are:  

1. Number of hidden layer: 1 

2. Number of units in a hidden layer: 50 

3. Activation: Rectified linear unit function 

Table 3 shows component-wise R2 for training and cross-
validation data for each ML algorithm and MLM 
component. From this table, it can be observed that all ML 
algorithms perform similarly on cross-validation data. 
This may not be the situation once the quantity or the 
nature of data changes. Furthermore, it can be noted that 
RF and ERT have lower cross-validation R2 compared to 
their training R2. This indicates that overfitting of data is 
taking place. For this study, ML algorithm which has the 
highest overall R2 on cross-validation data is used. RF has 
high cross-validation R2 for the majority of the 

component dataset. Hence, all components are modelled 
with this algorithm.  

Table 3 Coefficient of determination (R2) with training 
and cross-validation data for different ML algorithm 

 

Selection of features/input parameters  

Investigation on the reason for low cross-validation R2 for 
the wall, window solar gain, floor and roof indicated that 
sufficient features or input parameters were not present to 
map all heat gains and losses accurately on new or unseen 
data. Hence, feature selection exercise is performed only 
for these components.  

Additional inputs to the MLM components is selected by 
analyzing the correlation observed within the training data 
collected from Amsterdam, Brussels and Paris BEM. 
Figure 6 shows the correlation between independent and 
dependent parameters from the parametric BEM, 
clustered as heat map matrix. The heat map indicates the 
following: 

- Solar azimuth has a strong correlation with 
conduction through the wall and, in contrast, a weak 
correlation with conduction through the floor and 
the roof and solar gain through window;  

- Solar altitude has a strong correlation with 
conduction through floor and roof and with solar 
gain through the window and a weak correlation 
with conduction through the walls.  

Since, correlation only indicates the presence of a linear 
relationship, while the presence of a non-linear 
relationship as well as causal relation could not be ruled 
out. Thus, a further engineering interpretation is required 
to select parameters. Because of this interpretation, both 
solar azimuth and solar altitude are incorporated within 
the models. Additional inputs/features have improved 
cross-validation R2 for all the components (see Table 4) 
on an average, by 23% from the previous case. 

Table 4 Increase in R2 through feature selection and 
tuning of hyperparameter 

 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

217


