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Abstract 

This study proposes a methodology for intelligent 

scheduling of a heat pump installed in a refurbished grid-

connected detached house in Denmark. This scheduling is 

conducted through the coupling of a dynamic building 

simulation tool with an optimization tool. The 

optimization of the operation of the system is based on a 

price-signal considering a three-day period for different 

weather cases. The results show that the optimal 

scheduling of the system is successful in terms of 

reducing the peak load during times when electricity 

prices are high, thus achieving cost savings as well as 

maintaining good thermal comfort conditions. The 

proposed methodology bridges dynamic building 

modelling with optimization of real-time operation of 

HVAC systems offering a detailed model for building 

physics, especially regarding thermal mass and a 

stochastic price-based control. 

Introduction 

As the share of renewable energy sources (RES) in power 

generation is constantly increasing in many countries, 

imbalances arise between the supply and demand side. 

Specifically for Denmark, renewable energy is expected 

to cover about 80-85% of electricity consumption and up 

to 65% of district heating in 2020 (Danish Energy 

Agency, 2015). One of the main goals is that the entire 

energy supply is covered by RES by 2050. That calls for 

demand-side management (DSM) approaches that can 

facilitate the operation of the smart grid while enabling 

controllability of the electric loads. 

The potential of buildings’ participation in DSM 

approaches has been investigated, implementing 

strategies to reduce power consumption during peak 

periods (peak-shaving) and/or to shift the power 

consumption from peak periods to off-peak periods (load-

shifting). There is a number of studies indicating the 

importance of the structural thermal mass of buildings, for 

example Reynders et al. (2013), while some others 

implemented DSM by adjusting the HVAC systems of the 

building, for example Arteconi et al. (2013) and Masy et 

al. (2015). There are also a few studies that tried to 

reschedule the operation of shiftable plug loads, such as 

dishwashers, washing machines and tumble dryers, as in 

D’hulst et al. (2015).  

The two main types of control are direct control and 

indirect or price-based control. Schibuola et al. (2015) 

concluded that HVAC systems will not undergo direct 

control in future smart grids due to discomfort issues that 

this might bring to the occupants. Thus, price response 

strategies will be the main focus of this study. Particularly 

in countries like Denmark, where power generation 

achieved by RES accounted for 25% of the adjusted gross 

energy consumption, which describes total observed 

energy consumption adjusted for fluctuations in climate 

with respect to a normal weather year (Danish Energy 

Agency, 2015), this leads to very low electricity spot 

prices or even negative ones. Thus, price-based control 

can achieve peak-shaving that is much needed by the grid 

to ensure decrease or displacement of peak loads. 

Computational methods of design optimization have 

proven to be advantageous in several building studies 

according to Evins (2013). Optimization algorithms are 

mainly categorized into heuristic and meta-heuristic when 

it comes to building co-simulation. Heuristic algorithms 

include direct search such as pattern search and linear or 

non-linear programming. Meta-heuristic algorithms 

consist of evolutionary algorithms such as genetic 

algorithms (GA) or particle swarm optimization (PSO). 

So far, optimization in building modelling has been used 

with regards to building envelope, systems, energy 

generation and holistic approaches considering many 

aspects in building operation (Evins, 2013). Extensive 

studies have focused on optimizing the building envelope 

and dimensioning of the systems mostly during the design 

phase. The optimization of the control of the HVAC 

systems has been implemented in some studies. 

Particularly Zhou et al. (2003) investigated the 

minimization of electricity cost of varying cooling set-

points for different algorithms and concluded on a most 

suitable one. Miara et al. (2014) investigated how heat 

pumps provided with heat storage and floor heating 

system may take advantage of real-time pricing. The 

authors determined that the most important parameter to 

ensure this was the water heat storage tank. However, the 

flexibility that thermal mass, which is embedded into the 

building structure, can offer along with demand response 

management of the heating systems, have not been 

thoroughly discussed. Especially when using reduced 

order models or grey-box models, many optimization 

techniques and algorithms can ensure their feasibility. 

Their application has not been extensively highlighted 

though, in cases of flexible operation of HVAC systems 

in residential buildings. Particularly in the case of white-

box building models, which describe building physics and 
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heat transfer mechanisms in full detail, little effort has 

been made to use them as basis for optimal scheduling of 

the HVAC systems based on electricity pricing. This is 

mainly due to their complexity, which impedes their 

coupling with advanced optimization tools.  However, the 

potential that the thermal mass of the building gives with 

regards to energy flexibility is crucial to such studies and 

should be modelled with every detail possible. 

The current study aims at developing a methodology for 

optimally scheduling the systems of a grid-connected 

single-family house equipped with an air-to-water heat 

pump and low temperature radiators based on a price 

response strategy. This strategy will indicate the potential 

of the systems for optimization, which will define a 

generic methodology while enabling the utilization of the 

building’s thermal mass that can be applied in every 

residential building with similar HVAC systems.  

Model description 

The current analysis was conducted by use of a building 

model. This corresponds to a typical Danish single-family 

house (SFH) built between 1961-1972 (Figure 1), which 

is the most common type of SFH in Denmark according 

to Danmarks Statistik (2016). The properties of the 

building envelope and systems have been created 

according to TABULA database (2016). The building 

area is 153m2, while the glazing covers an area of 34m2. 

Its building envelope has been extensively renovated and 

the average U-value of the building is 0.27 W/m2K. The 

material layers that consist the building components can 

be seen in Table 1. The house contains an air-to-water 

heat pump (HP) of 13 kW with COP of 3.5. The heat 

emission system installed is a hydronic one with low-

temperature water radiators. The controller of the 

hydronic system is a thermostat set at 21oC with 2oC 

deadband based on the operative temperature.  

Table 1: Material layers 

Building 

component 

Layer material Thickness 

(m) 

U-value 

(W/m2K) 

External 

walls 

Brick  

Light insulation 

Brick  

0.05 

0.25 

0.05 

0.13 

Roof Light insulation 

Wood 

Gypsum 

0.34 

0.03 

0.013 

0.10 

Floor Wood 

Light insulation 

Gypsum 

0.02 

0.28 

0.02 

0.12 

Deterministic profiles were created for the internal gains. 

The occupants living in the house were assumed to be two 

according to data from Danish Statistics (Danmarks 

Statistik, 2016) following a typical house living profile 

(Figure 2) and with sedentary activity level (met-

value=1.2) according to DS/EN 15251 (2007). Their 

clothing was variable ranging from 1 during the winter 

season to 0.5 for the summer season. The schedules of 

equipment and lighting can also be found in Figure 2. 

Internal blinds were drawn in cases of excessive solar 

radiation. It was also assumed that windows started to 

open when indoor temperature reaches 25oC and opened 

fully at 27oC. There was no mechanical ventilation or 

cooling installed in the building. The infiltration rate was 

0.2 ACH representing a quite air-tight refurbished 

envelope. The location was set to Copenhagen, Denmark. 

The main façade of the house was assumed to be oriented 

towards the south. The weather file used was the Danish 

Design Reference Year (DRY) (DMI, 2013).  

 

Figure 1: Design of examined SFH 

 

Figure 2: Daily schedule for internal gains 

Since emphasis will be placed on the utilization of the 

thermal mass of the building in the present study, the heat 

transfer mechanisms taking place inside the building 

structure are important. The wall model used is a finite 

difference model of multi-layered components. Each 

material layer is discretized into four nodes. Thus, it can 

provide accuracy when alternative models, such as RC-

networks, fail to. Furthermore, nonlinear effects in the 

thermal dynamics of buildings, which are usually 

oversimplified in RC-networks (Thavlov and Bindner, 

2015), (Zong et al., 2017), are described in detail in the 

current model. 

Methodology 

In this paper, a price-based control strategy for the 

management of the heat pump was implemented that 

enabled the exploitation of dynamic electricity prices and 

thus management of the energy load according to the 

grid’s imbalances. In this way, the interaction of the 

detached house with the grid was improved. The 

scheduling of the HP comprised two parts: the control of 

the system, and its optimization. 

The scheduling of the heat pump was carried out 

considering an advanced controller for the radiators. This 

can be seen in Figure 3. The base heating setpoint was set 

to 20oC. An additional controller, which contained an 

algorithm to smooth its output as an approximation to a P-
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controller so that no events (abrupt turn-ons and offs) 

were created, was added in the loop to allow for the 

system’s flexibility when the electricity prices were low. 

Therefore, the operation of the HP was forced to increase 

during low-tariff hours. The hourly tariff concept was 

assumed to reflect the lack of or excess of RES energy in 

the grid and thus represent the stress on the grid (Dar et 

al., 2014). The low electricity prices were defined as the 

ones that were lower than the average electricity price of 

the specific month. This means that when the electricity 

price was low, a positive deadband of 3oC was added to 

the base setpoint, resulting in 23oC upper threshold, which 

allowed the system to take advantage of the low prices. In 

this way, the increase in the heating setpoint would enable 

heat to be stored into the thermal mass during low price 

periods, and be released back to the room when prices 

were higher. The electricity price signal was imported into 

the model as a source file connected to the P-controller. 

The proportional band of the P-controller was set to -0.5 

as this referred to heating mode. The capability of the 

system to keep the indoor environment within comfort 

conditions was a significant advantage of the selected 

control strategy. According to EN/DS 15251 (2007), 

Category II of acceptable thermal comfort ranges from 

20-25oC. 

The optimization was defined as minimization of the 

operating cost of the HP. This cost depended on the 

variable electricity prices and on the consumption of the 

HP. The cost-optimal control of the heat pump on a 3-day 

horizon would ensure cost savings in the electricity bill 

along with the desired peak shavings in the heat load of 

the building. Also, the 3-day horizon was selected so that 

any phenomena of cumulative heat storage into the 

thermal mass can be observed. Due to increased 

computation time, it was not selected to investigate a 

longer period. It has to be clarified that no electricity was 

assumed to be sold back to the grid or modelled in this 

case for simplification reasons. 

 

Figure 3: Control of heating system based on price 

signal 

The optimization problem of the intelligent scheduling of 

the heat pump according to the price signal was 

formulated as following: 

Minimize  CHP (1) 

where CHP is the operating cost of the HP, calculated as 

following: 

 CHP=pel . W (2) 

where pel is the total electricity price and W is the energy 

consumption of the HP.  

The optimization of the system operation was conducted 

through the boiler schedule which was characterized by 

ten variables per day, bi, corresponding to the schedule of 

the part load operation of the HP. This means that a 

different schedule of the HP operation was optimized for 

each day.  

𝑏𝑖 ∈ [0,1] 𝑓𝑜𝑟 𝑖 = 1 … 30 (3) 

The optimization was conducted with the use of the open-

source software MOBO. MOBO is a generic freeware 

designed to handle single-objective and multi-objective 

optimization problems with continuous or discrete 

variables (Rosli et al., 2016). It provides the possibility to 

be coupled to building performance simulation tools, 

while selecting different algorithms to perform the 

calculations. Furthermore, MOBO has the feature of 

running multiple simulations in parallel, thus reducing the 

overall computation time with a factor equal to the 

number of threads available in the computer. In this case, 

different optimization algorithms were selected, and they 

were compared upon the optimal solution and the number 

of runs. In particular, a deterministic algorithm (Hooke-

Jeeves), two genetic algorithms (NSGA-II, Omni-

optimizer) and a hybrid one (GA and Hooke-Jeeves) were 

tested. As defined in Wetter and Wright (2004), GA are 

algorithms that operate on a finite set of points, called a 

population. The different populations are called 

generations. They are derived on the principles of natural 

selection and incorporate operators for fitness assignment, 

selection of points for recombination, recombination of 

points, and mutation of a point. The simple GA iterates 

either until a user-specified number of generations is 

exceeded, or until all iterates of the current generation 

have the same cost function value (Wetter and Wright, 

2004). Initially, the optimization algorithms were 

implemented having the same solver settings. These were 

8 populations, 20 generations, 0.05 mutation probability 

and 0.9 cross-over probability. The meaning of the cross-

over probability is that when this is not met, the 

individuals do not continue to the new population as 

explained in Evins et al. (2010). The crossover process 

continues until the new population is full. The reason for 

using a small population size was to reduce computation 

time. The deterministic algorithm that was tested does not 

enable parallel computing, thus being significantly 

slower. The settings of the deterministic algorithm were 

ρ=0.05 (convergence parameter) and ε=0.01 (minimum 

criterion to stop the search). 

Furthermore, different solver settings were applied to 

determine their effect on achieving the optimal solution. 

Based on the cost-optimal solution and the number of 

simulations carried out until convergence was reached, 

one optimization algorithm was selected and tested upon 

its accuracy for various numbers of generations. Then, the 

solver settings that reached the biggest cost reduction 

were selected and implemented into the building model. 

The schedule for the boiler/HP operation was thus defined 

according to the optimal solution. These results were 
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compared to the ones of the reference case with normal 

operation of the HP, as previously described in the model 

description. 

Simulation 

The simulation was run in IDA ICE Version 4.7 (EQUA, 

2013) using MOBO. The building was simulated as a 

single-zone model. The reference model was initially run 

with the DRY weather file. Three climate cases were 

selected out of the entire simulation period, the coldest 3-

day period of the heating season (January) with a mean 

ambient temperature of -4oC, the warmest 3-day period of 

the heating season (September) with a mean ambient 

temperature of  11oC and an intermediate one (April) 

when the average ambient temperature  was 3oC.  

 

Figure 4: Electricity spot prices over 3 days 

The prices for electricity were set in the model through a 

stochastic profile reflecting real electricity prices in 2015 

according to the Nordic electricity market Nord Pool for 

East Denmark. During this period, wind power generation 

accounted for 74% of the total electricity production, 

which explains the low electricity prices that comprise the 

price signal that was coupled to the IDA ICE model. 

These prices reflect the total electricity prices consisting 

of variable el-spot prices (commercial), which account for 

32% of the total price in Denmark, while the remaining 

68% are fixed taxes for local network, grid and system 

tariffs, public service obligation tariff and further 

subscriptions to electrical companies based on the 

Association of Danish Energy Companies (2015). The 

total electricity prices were used in the model so that they 

correspond to the ones that electricity customers have to 

pay. The same price-signal was used for all three cases of 

weather data to ensure comparability, so it has not been 

correlated to the climate data. Figure 4 presents the 

electricity spot prices during this 3-day period. The 

negative prices indicate the surplus of wind power 

generation during these days. 

Result analysis and discussion 

As mentioned before, different optimization algorithms 

were tested in MOBO in order to determine which one to 

select based on the biggest cost reduction they could 

achieve. The selected genetic and deterministic 

algorithms were implemented and tested for the three 

different weather data having the same solver settings, as 

described in the Methodology section. The implemented 

algorithms are presented in Table 2. A detailed 

explanation of all the algorithm parameters is beyond the 

scope of this paper and we refer the readers to Wetter and 

Wright (2003). The cost-optimal solution refers to the 

minimum cost (€) that each optimization algorithm 

achieved which means the total operating cost of the HP 

needed to heat up the building for the examined 3 days.  

Due to the increased number of variables used in the 

optimization problem, some discontinuities could be 

expected in the cost function which would make 

optimization rather difficult to be achieved (Wetter, 

2004).  For this reason, different optimization algorithms 

were tested, some of which (i.e. Hooke-Jeeves) are less 

likely to converge to a discontinuity far from the optimal 

solution (Wetter, 2011). Moreover, the total cost 

reduction observed might be limited for the above-

described reasons and is not assessed per se but in 

comparison with the rest of the results. Furthermore, some 

uncertainty in the results has to be considered due to 

randomness of the optimization. The hybrid algorithm, 

GA and Hooke-Jeeves, proved to be the best one among 

the rest, even though the differences were very small, 

calculating the biggest cost reduction in all three weather 

cases. It has to be noticed that the hybrid algorithm led to 

a higher number of simulations, due to which it converged 

to a lower cost-optimal solution. Thus, it was selected to 

run some further analysis on the impact that the number 

of generations has on achieving the optimal solution. 

 

Table 2: Results of different optimization algorithms 

Optimization 

algorithm 

Type of algorithm Cost-optimal 

solution [€] 

Simulations until convergence 

(output) 

Weather 

data 

NSGA-II Genetic (evolutionary) 1.802 144 Cold 

0.787 152 Intermediate  

0.008 152 Warm 

Hooke-Jeeves Deterministic (pattern-

search) 

1.775 221 Cold 

0.778 166 Intermediate  

0.008 60 Warm 

GA and Hooke-

Jeeves 

Hybrid 1.774 311 Cold 

0.778 363 Intermediate  

0.007 311 Warm 

Omni-optimizer Genetic (evolutionary) 1.806 152 Cold 

0.780 152 Intermediate  

0.007 152 Warm 
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Three numbers of generations were applied to the hybrid 

algorithm being comprised of GA and Hooke-Jeeves, and 

are presented in Table 3 along with the number of 

simulations and the solution they resulted in. It can be 

observed that the higher the number of generations and 

the more simulations conducted, the bigger cost reduction 

was achieved, as it was expected. Therefore, the optimal 

solution found with 100 generations for each weather case 

was used for the following analysis. However, it has to be 

pointed out that even though a scenario of 100 generations 

leads to approximately twice as many simulations as the 

one of 50 generations, the cost reduction is not 

significantly bigger. Specifically, this was 2% for the cold 

and intermediate weather data and 1% for the warm case, 

(Table 3). Therefore, it was decided not to investigate an 

even bigger number of generations. 

Table 3: Impact of generations on optimal solution 

GA and 

Hooke-Jeeves 

Cost-optimal solution [€]  

(Number of simulations) 

Generations Cold Intermediate Warm 

25 1.7741 

(311) 

0.7778 

(363) 

0.0075 

(311) 

50 1.7727 

(512) 

0.7771 

(568) 

0.0074 

(800) 

100 1.7418 

(913) 

0.7612 

(909) 

0.0073 

(1491) 

Figure 5 shows the power consumption for the reference 

and optimized case for each of the weather cases. As it 

was expected, the pattern is different for the different 

climate cases examined. For the cold weather, when using 

the thermostat as in the reference case, the HP turned on 

and off in very small intervals, in order to cover the high 

demand, which results in high power peaks. On the other 

hand, for the optimal case, the power consumption 

presented a considerably more smooth pattern, which was 

fully in line with the price signal. This is also attributed to 

the smoothing effect that the controller applied in the 

optimal scenario has. There were small parts of the load 

that were shifted towards a different timing than in the 

reference case, but this schedule mainly achieved 

considerable peak shaving. It is clear that the optimization 

was conducted successfully, as during times with low 

electricity prices, the HP was forced to increase its part 

load and vice versa. For the intermediate climate case, it 

can be seen that the power consumption pattern is similar 

for the reference and optimal cases. The time when the 

power consumption peaks is almost identical, but still 

there was peak shaving achieved with the optimal case 

and the operation pattern of the HP is more smooth. This 

means that continuous on/offs are avoided, which would 

lead to a decrease in HP’s lifetime and inefficient 

operation. For the warm climate case, it is obvious that the 

energy demand is amost zero, so the difference between 

the two cases is marginal. This minimum heat load left no 

room for the optimization to take place.  

Table 4. Total energy consumption results 

Weather data Total energy consumption (kWh) 

Reference case Optimal case 

Cold 191 180 

Intermediate 92 104 

Warm 8.80E-05 8.70E-05 

Regarding the total energy consumption, the results were 

different for the different climate cases. These are 

presented in Table 4. For the cold climate, there was an 

energy consumption reduction of 6% with the optimal 

case, while for the intermediate climate there was a 13% 

increase for the optimal case. This indicates that when 

implementing a DSM strategy, i.e. peak shaving, this 

might result in an overall over-consumption. However, 

the goal of this strategy is to use the energy produced from 

RES, which is, in this study, reflected in the low prices. 

So, the focus is not to achieve energy minimization, but 

to “force” the operation of the HP to follow the production 

pattern of renewable energy in the energy system, while 

maintaining the thermal comfort and achieving cost 

savings for the occupants. As previously mentioned, the 

heat demand for the warm climate is minor, so there is 

only 1% decrease in the total energy consumption after 

the optimal case was applied. 

 

 
Figure 5: Power results for the optimized scheduling of the HP and the reference operation for cold weather data (left), 

intermediate (middle) and warm (right) 
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Figure 6: Operative temperature results for the optimized scheduling of the HP and the reference operation for cold 

weather data (left), intermediate (middle) and warm (right) 

 

As far as cost reduction is concerned, the results varied, 

too, with regards to the different climate cases and can be 

seen in Table 5. In the cold weather case, optimally 

scheduling the HP resulted in 42% decrease in the total 

operating cost of the HP for the examined 3-day period. 

In the intermediate case, the cost savings were 22% 

compared to the reference operation of the HP, while in 

the warm weather case these were significantly lower, 

approximately 13%, as it was expected. 

Table 5. Operating cost results of the HP for 3 days 

Weather data Total operating cost (€) 

Reference case Optimal case 

Cold 2.998 1.742 

Intermediate 0.979 0.761 

Warm 0.008 0.007 

Regarding peak shavings, which is the main goal of this 

demand side management approach, the results showed a 

clear decrease in peak consumption at the optimal case 

both for the cold and the intermediate weather. Taking the 

highest peak in power for each case, there was a reduction 

of 27% (2.75 kW) for the cold weather and 21% (1.32 

kW) for the intermediate weather (Figure 5). This was 

achieved due to the smoother operation pattern of the heat 

pump that shifted parts of the load in time, which led to 

reduced peak demand. The magnitude of the potential 

peak decrease would always depend on the price signal, 

but the main outcome is that the implemented control is 

an effective peak shaving strategy. 

Figure 6 presents the operative temperature for the 

reference and optimized cases for each of the weather 

cases. It can be observed that there is a trend for the 

optimal cases to have higher operative temperature than 

the respective of the reference cases at all climate cases. 

This can be explained by the control of the heating 

system, which was able to increase the setpoint up to 23oC 

when the electricity prices were low. It has to be pointed 

out that the electricity prices according to which the 

optimal scheduling of the HP was conducted in the three 

weather cases were found to be low compared to the 

average monthly price, which resulted in utilization of the 

increased heating setpoint most of the time. If a different 

threshold was used instead of the monthly average 

electricity price, the price signal might not be 

characterized as low most of the time and the results 

would be somewhat different as the decision to add the 

deadband to the base setpoint would alter. The lowest 

threshold of the thermal setpoint (considering the given 

deadband) was set to be equal for the reference and the 

optimal cases (20oC), so that they both retain similar 

thermal comfort conditions. Furthermore, there is a clear 

correlation between the power consumption pattern and 

the operative temperature pattern. This explains why the 

temperature of the reference case of the cold climate had 

frequent fluctuations, whereas the temperature of the 

optimal case of the cold climate and both cases of the 

intermediate climate had a smooth pattern. Due to the cold 

external temperatures that reached -18oC, the HP was 

forced to switch on and off very frequently creating high 

peaks in order to maintain the desired indoor temperature. 

In the intermediate weather case, the significantly higher 

ambient temperatures allowed a more flexible operation 

of the HP. In the warm climate case, there was almost no 

difference observed in the operative temperatures 

between the optimal and the reference case since the HP 

operated for a very short time. In all cases, the operative 

temperature stayed within the acceptable limits of EN/DS 

15251 ensuring that with the applied control and cost 

optimization, the thermal comfort for the occupants was 

not compromised. 

 This can be verified by the amount of occupancy hours 

into the different comfort categories, which were in all 

cases within the acceptable categories according to 

EN/DS 15251, as it can be seen in Table 6. In particular, 

Table 6 indicates the cumulative share of occupancy 

hours that fell into the three comfort categories according 

to EN/DS 15251. Category IV is not presented since no 

occupancy hours belonged to that. The optimized 

scheduling of the HP increased the amount of occupancy 

hours belonging to comfort Category I for the cold and 

intermediate weather case, while slightly decreased these 

for the warm weather case. Overall, the optimized 

operation of the HP maintained the good thermal comfort 

corresponding to the design conditions of the heating 

system in all three weather cases. 
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Table 6: Thermal comfort assessment for optimal 

scheduling of HP 

Weather data Cold Intermediate Warm 

Case Opt. Ref. Opt. Ref. Opt. Ref. 

Comfort 

category 
Share of occupancy hours (%) 

I (best)         

(21-25oC) 
71 40 100 26 78 100 

II (good) 

(20-25oC) 
100 98 100 100 100 100 

III (acceptable) 

(18-25oC) 
100 100 100 100 100 100 

Summing up, the optimization problem has been solved 

using MOBO coupled with IDA ICE. The simulations 

were performed on a computer with Intel i7 4-core 

processor clocking at 2.1 GHz and 8 GB of RAM. The 

average total time of solving was 7250 seconds for the 

cold and warm weather case and 7460 seconds for the 

intermediate one. In this specific case, the optimization 

problem was solved for a three-day period.  

It has to be pointed out that the goal of this study was the 

proposal of a methodology to schedule the HP operation 

intelligently using building performance simulation tools 

according to the grid’s imbalances that are reflected on 

the price signal and not the investigation of optimization 

techniques. In addition to this, the complicated building 

model and the large number of continuous variables used 

in the optimization problem increased significantly the 

computation time. On the other hand, the advanced 

building model that was used modelled accurately the 

thermal building physics mainly of the thermal mass and 

the complicated heat transfer mechanisms that take place 

during the charging or discharging of the thermal mass. 

These were critical to estimate the flexible operation of 

the HP.  

Due to increased computation time, it was chosen to 

investigate a three-day design period for each weather 

case instead of a whole- year simulation that would be 

more representative. The optimization horizon was not 

restricted to one day, since the authors wanted to 

investigate any heat storage mechanisms into the thermal 

mass of the building, which are cumulative over time. 

Furthermore, the proposed methodology refers to future 

energy market designs, where the optimization of 

individual buildings’ heating or cooling systems based on 

price signals will be possible. In this case, day-ahead 

prices will be available, so the optimization problem will 

be solved only for the following day, which will result in 

shorter computation time. However, attention should be 

paid to the initial and final conditions of the thermal 

model, so that they are consistent with the ones of the 

previous and following day. 

Computationally expensive simulations also led to tight 

solver settings (small number of populations and low 

mutation probability), which increased the chances of not 

converging to a stationary minimum point of the cost 

function.  

The positive 3oC deadband provided to the base heating 

setpoint that allowed for the system flexibility was 

selected such that the thermal comfort of occupants was 

not compromised with the optimized scheduling of the 

heating system. If a looser comfort threshold was to be 

achieved, this deadband could be further expanded so that 

lower operative temperatures than 20oC should be 

allowed. Furthermore, different price signals could have 

been applied to the case so that an estimate of the range 

of peak and power savings could be made and also a 

realistic correlation to the weather data would be possible. 

Lastly, the use of historical weather data for the examined 

period would have resulted in much more clear 

optimization results and would have avoided uncertainty. 

Hence, they ought to replace the DRY weather file as a 

next step to this study.  

Conclusion 

In this study, the cost optimization of the control of a HP 

in a detached Danish house was investigated. A dynamic 

building performance simulation tool was coupled to an 

optimization software. A hybrid genetic algorithm was 

selected as the most suitable one to achieve the biggest 

cost reduction of the operation of the HP. The optimal 

scheduling of the HP that was achieved based on a price 

signal for three weather data was compared to the 

reference case, which was normal operation of the HP 

system. The comparison was made with regards to power 

peak shavings, cost savings, operative temperature and 

thermal comfort. The results showed that the optimization 

was conducted successfully, as the price-based control 

managed to reduce the peak loads during high price times 

and increase the energy load during the low price times. 

This resulted in a smoother pattern for the operation of the 

HP for the cold and intermediate weather data. In the 

warm weather case, the very low heating demand left no 

room for optimization. Furthermore, the optimal 

scheduling of the HP maintained good thermal comfort of 

the occupants with regards to the operative temperature. 

The operative temperatures during the optimal scheduling 

of the system were maintained in a good comfort category 

according to EN/DS 15251. Even though the detailed 

building model that was used increased the number of 

variables in the optimization problem and the 

computation time, it modelled the heat dynamics into the 

thermal mass sufficiently well, which allowed for the 

flexible operation of the HP. 

Finally, the three selected weather cases represented 

different climatic conditions during a heating season in 

Denmark. The cold and the intermediate weather cases 

proved to be representative of extreme and mild winter 

weather conditions and enabled the optimization of the 

HP. The warm weather data could not be considered for 

the optimal scheduling of the HP, since the heat demand 

was very low. Therefore, should a holistic overview of the 

intelligent scheduling of a HP in a similar building and 

climate be given, a combination of the two afore-

mentioned weather data has to be considered. 
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