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Abstract  

Experimental identification of grey box model is the key 

of two social needs, the energy performance measurement 

and the energy management. Obtaining a reliable model 

may be time consuming and depends on the knowledge of 

building characteristics available. Furthermore, on-site 

measurements have to be collected before starting the 

identification process. From these facts, this paper 

investigates the capabilities of a sequential Monte Carlo 

method to learning models. An unoccupied house under 

real weather conditions has been used to test the proposed 

method. It has been shown that even if the chosen model 

structure is not the best, the sequentially learnt model 

provides satisfactory simulation results. Indeed, 

information on the building were used in the initialization 

which has prevented the algorithm to diverge from 

physical meaning. Afterwards, insights from the 

identified model may be used to improve the model with 

the complete data set.  

Introduction  

Building performance modelling is facing two important 

societal needs: the guarantee of energy performance and 

the estimation of building energy consumption for 

facilitating energy demand response.  

In many countries, energy consumption estimation is 

mandatory for obtaining the buildings permits. However, 

the methods used for energy consumption estimation 

present a variance of 50% between the estimated and 

measured values (Turner & Frankel 2008). About 70% of 

this variance may be explained by the differences between 

the inputs used for estimation, which are not measured on-

site, and those which affect the real building. The energy 

consumption depends on inputs and therefore cannot be a 

measure of building energy performance. Building energy 

performance should be given by the intrinsic thermal 

characteristics of buildings, i.e. by the physical 

parameters of thermal models which relate inputs to 

outputs measured on-site.  

The identified model can also be useful to facilitate 

building energy management. Indeed nowadays, the 

energy production and storage are adjusted such that the 

energy demand is always satisfied. The complexity of this 

strategy will be augmented with the increasing of the 

share of renewable energy sources in the energy mix. The 

energy sustainability and the network efficiency can be 

improved by the demand response, in which the demand 

is adapted to the production. Building energy demand can 

be estimated by using model predictive control where the 

forecast is given by the identified model and predicted 

inputs.  

Solving these two social demands requires breaking the 

scientific deadlocks 1) of experimental model 

identification of the building and its systems and 2) of the 

measurement or estimation of the inputs. 

State of the art 

The emergence of energy harvesting wireless technology 

offers a way to make the monitoring of buildings more 

interoperable. The flow of information is important and it 

has to be embedded in a model to extract information. The 

popularization of model predictive control (Afram & 

Janabi-Sharifi 2014) has increased the focus on model 

identification because the efficiency of the control 

strategy depends on the model accuracy. Black box or 

grey box models are usually employed to describe the 

system through inputs and outputs. However, grey box 

models introduce more information since their parameters 

and structures have a physical meaning. In certain cases, 

relations between mathematical and physical parameters 

exist if the black box structure is chosen such that it 

matches the physical one (Naveros et al. 2015). 

Identification of physical parameters of thermal models is 

not new and a number of outdoor experiments under real 

weather conditions have proved the capability of the 

method (Bloem 1994, Jiménez 2014) . Parameters of grey 

box models are either identified iteratively or 

sequentially. The former method fits the model on a batch 

of data whereas the latter updates the model as soon as 

new information become available. Nonetheless, in both 

cases, the state estimation is solved sequentially by the 

Kalman filter or an approximation of it. Different iterative 

methods have been successfully applied to experiments of 

various scales (Andersen et al. 2014, Bacher & Madsen 

2011, Wang & Xu 2006, Zayane 2011) . Identify a reliable 

model is time-consuming and depends on the a-priori 

knowledge of the building. Iterative methods require that 

the data are available; therefore the monitoring time is not 

put in good use. Sequential methods can be employed 

during the monitoring time to provide a first model fit and 

insightful information. 
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Unlike iterative methods, sequential methods estimate the 

states and parameters based only on the most recent data 

and previous estimation, which make the problem more 

complex. To estimate simultaneously both states and 

parameters, the parameters are added to the state vector 

which transforms a linear problem into a non-linear one. 

Hence, a Kalman filter approximation is required to solve 

the problem such as the extended Kalman filter (Fux et al. 

2014), the unscented Kalman filter (Maasoumy et al. 

2014, Martincevic et al. 2015, Radecki & Hencey 2012)  

or the ensemble Kalman filter (Huchuk et al. 2014). The 

main difficulty of this strategy is the tuning of the 

parameter evolutions. Indeed, the parameters are treated 

as dynamic variables but they should converge to fixed 

values to preserve the physical meaning of the thermal 

model; it is a trade-off between exploring the parameter 

space and converging. Moreover, the dimension of the 

state vector rapidly increases with the number of 

parameters, which makes the initialization and tuning of 

the algorithm harder. This is why the sequential 

estimation is usually used for low order models.  

This paper provides a method based on sequential Monte 

Carlo for estimating states and parameters. A description 

of the test case is given and then the methodology for 

obtaining the state space representation from the thermal 

network is outlined. Afterwards, the theoretical 

development of the proposed method is presented and the 

capabilities of the proposed method are tested on the real 

test case.   

Test case 

The test case considered is the second experiment 

conducted by Fraunhofer Institute in Holzkirchen (near 

Munich, Germany) on the twin house O5 during April and 

May 2014. It is an unoccupied single family house 

with 100 m2 ground floor, a cellar and an attic space; a 

full description is given in Strachan et al. (2016). The 

ground floor is divided in two, the south (green zone 

Figure 1) and the north zone.  

 

 

Figure 1: Layout of the house 

The cellar, the attic and the north zone are considered as 

boundary spaces with the air temperature kept constant 

at 22 °C. However, the air temperatures in the north zone 

differ from the set-point despite the fact that the blinds 

were closed and the doors connecting the two zones were 

sealed to reduce the chance of overheating; only the blinds 

in the south were opened.  Mechanical ventilation was set 

to supply a volume flow rate of 60 m3/h into the living 

room and extract 30 m3/h in the bathroom and the south 

bedroom. Electric heaters of the south zone were used 

with a Randomly Ordered Logarithmic Binary Sequence 

(ROLBS). The ROLBS signal provides sufficient 

excitation and maximizes the temperature difference with 

the outdoor and adjacent spaces. The signal was designed 

to cover the range of time constants from 1 hour to 90 

hours and avoid correlation with solar radiations. Based 

on these specifications, a model structure for the south 

zone has to be chosen. 

Dynamic thermal model  

The south zone is modelled by a third order thermal 

network (Figure 2) where the thermal transfers through 

the envelope, the ventilation and the adjacent zone are 

represented. More precisely the heat transfer rates [W] are 

defined: 

 𝑞1: infiltration and windows conduction  

 𝑞2: outside air convection 

 𝑞3: wall conduction 

 𝑞4: wall conduction and inside air convection 

 𝑞5: zone wall conduction 

 𝑞6: ventilation advection 

The accumulation of energy is represented by the thermal 

capacities of the wall 𝐶𝑤, of the indoor air with internal 

walls and furniture 𝐶𝑖, and of the wall separating the two 

zones 𝐶𝑧. The inputs considered are the following 

temperature sources [°C] and heat rate sources [W]: 

 𝑇𝑜: outdoor temperature 

 𝑇𝑣: ventilation temperature 

 𝑇𝑧: north zone temperature 

 �̇�𝑜: solar radiation on the outside wall surfaces  

 �̇�𝑖: solar radiation through the windows 

 �̇�𝐻𝑉𝐴𝐶 : heat flow from HVAC system 

 

 

Figure 2: Thermal network of the south zone 
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Table 1: Information required for modified nodal analysis 

 

The thermal networks in Figure 2 can easily be 

transformed in state-space representation by using 

modified nodal analysis; a complete description of the 

method is given by Ghiaus (2013). All the elements 

required for building the state space representation are 

concatenated in Table 1, 𝑙 and 𝑘 denoting the number of 

nodes and branches. The shaded part in Table 1 represents 

the incidence matrix 𝐴, where the rows contain heat rate 

flow 𝑞𝑘  crossing a thermal resistance 𝑅𝑘 and the columns 

contain temperature nodes 𝜃𝑙. The incidence matrix is 

filled in row 𝑘 with −1 if the flow 𝑞𝑘 leaves the node, 1 if 
it enters the node and 0 if the resistance 𝑅𝑘 is not 

connected to the node. The state space is obtained by first 

writing the heat transfer rates in matrix form 

𝑒 = −𝐴𝜃 + 𝑏 (1)  

𝑞 = 𝐺𝑒 (2)  

where b is the vector of temperature sources and 𝐺 is the 

diagonal matrix of thermal conductivities. 

The heat balance in each temperature node is defined by 

𝐶�̇� = 𝐴𝑇𝑞 + 𝑓 (3)  

where �̇� is the time derivative of 𝜃.  

Putting (1) in (2) and then (2) in (3) it results 

𝐶�̇� = 𝐾𝜃 + 𝐾𝑏𝑏 + 𝑓 (4)  

𝐾 = −𝐴𝑇𝐺𝐴 (5)  

𝐾𝑏 = 𝐴𝑇𝐺 (6)  

where 𝑓 is the vector of heat rate sources and 𝐶 is the 

diagonal matrix of thermal capacities.  

All the nodes are not connected to a thermal capacity; 

therefore the diagonal of the matrix 𝐶 has zeros and 

cannot be inverted. This fact is highlighted by writing 

equation (4) in bloc-matrix form 

[
0 0
0 𝐶𝑐

] [
𝜃0̇

𝜃�̇�

] = [
𝐾11 𝐾12

𝐾21 𝐾22
] [

𝜃0

𝜃𝑐
] + [

𝐾𝑏1

𝐾𝑏2
] 𝑏

+ [
𝐼11 0
0 𝐼22

] [
𝑓0

𝑓𝑐
] 

(7)  

where the subscripts 𝑐 and 0 denote respectively nodes 

with and without thermal capacities, and 𝐼11 and 𝐼22 are 

identity matrices of appropriate dimensions.  

The continuous state space is obtained by eliminating 

nodes without thermal capacity and therefore separate 

differential and algebraic equations 

�̇�𝑐 = 𝐴𝑠𝜃𝑐 + 𝐵𝑠𝑢 (8)  

𝜃0 = 𝐶𝑠𝜃𝑐 + 𝐷𝑠𝑢 (9)  

with 𝐴𝑠 the state matrix, 

𝐴𝑠 = 𝐶𝑐
−1(−𝐾21𝐾11

−1𝐾12 + 𝐾22) (10)  

𝐵𝑠 the input matrix, 

𝐵𝑠 = 𝐶𝑐
−1[−𝐾21𝐾11

−1𝐾𝑏1 + 𝐾𝑏2  − 𝐾21𝐾11
−1  𝐼22] (11)  

𝐶𝑠 the output matrix, 

𝐶𝑠 = −𝐾11
−1𝐾12  (12)  

𝐷𝑠  the feedthrough matrix 

𝐷𝑠 = −𝐾11
−1[𝐾𝑏1  𝐼11  0]  (13)  

and 𝑢 the input vector 

𝑢 = [𝑏 𝑓]𝑇 (14)  

In this case, the output matrix Cs is chosen by taking the 

state 𝜃𝑖  as the output, which implies that the feed through 

matrix is zero. The input vector (14) is given by 

𝑢 = [𝑇𝑜 𝑇𝑜  0 0 0 𝑇𝑧 𝑇𝑣 �̇�𝑜 0 �̇�𝑖𝑛 0]𝑇 (15)  

with �̇�𝑖𝑛 = 𝛼�̇�𝑖 + �̇�𝐻𝑉𝐴𝐶.  

The input matrix 𝐵𝑠  can be reduced by taking only the 

columns corresponding to non-zero elements in 𝑢 and by 

adding the first and the second column of 𝐵𝑠. 

The differential algebraic equations (8) and (9) provide a 

deterministic description of the system but physical 

systems are often influenced by random disturbances. To 

describe the deviation between the equations and the true 

variation of the state, additive noise term is introduced 

�̇�𝑐 = 𝐴𝑠𝜃𝑐 + 𝐵𝑠𝑢 + 𝜎�̇� (16)  

with 𝜎 the scaling of the incremental variance and 𝜔 a 

Wiener process.  

The output of the system is observed at discrete time 

instant 𝑘∆𝑡 e.g. θck
= θc(k∆t), therefore the output 

equation is expressed in discrete time 

𝑦𝑘 = 𝐶𝑑𝜃𝑐𝑘
+ 𝑣𝑘 (17)  

where 𝑣𝑘  is a white noise process with covariance 𝛴𝑣 and 

𝐶𝑑 = 𝐶𝑠. 

Equations (16) and (17) represent stochastic continuous-

discrete system. By assuming a zero-order hold for the 

𝑩𝒓𝒂𝒏𝒄𝒉𝒆𝒔 [𝒌𝟏:𝟕] 𝑵𝒐𝒅𝒆𝒔 [𝒍𝟏:𝟒]  

𝒒 𝑮 𝒃 
𝜽  

𝜃𝑠𝑜 𝜃𝑤 𝜃𝑖 𝜃𝑧  

𝑞1 1 𝑅𝑖⁄  𝑇𝑜 0 0 1 0  

𝑞2 1 𝑅𝑠𝑜⁄  𝑇𝑜 1 0 0 0  

𝑞3 2 𝑅𝑤⁄  0 −1 1 0 0  

𝑞4 2 𝑅𝑤 + 2𝑅𝑠𝑖⁄  0 0 −1 1 0  

𝑞5 2 𝑅𝑧⁄  0 0 0 −1 1  

𝑞6 2 𝑅𝑧⁄  𝑇𝑧 0 0 0 1  

𝑞7 1 𝑅𝑣⁄  𝑇𝑣 0 0 1 0  

   0 𝐶𝑤 𝐶𝑖 𝐶𝑧 𝑪 

   �̇�𝑜 0 �̇�𝑖𝑛 0 𝒇 
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input and equally space data, (16) can be discretized to 

obtain 

𝜃𝑘+1 = 𝐴𝑑𝜃𝑐𝑘
+ 𝐵𝑑𝑢𝑘 + 𝑤𝑘 (18)  

with 𝑤𝑘  a white noise process with covariance 𝛴𝑤 and 

𝐴𝑑 = 𝑒𝐴𝑠∆𝑡 (19)  

𝐵𝑑 = ∫ 𝑒𝐴𝑠𝜏𝑑𝜏 𝐵𝑠

∆𝑡

𝜏=0

 (20)  

𝛴𝑤 = ∫ 𝑒𝐴𝑠𝜏𝜎𝜎𝑇𝑒𝐴𝑠𝜏𝑇
𝑑𝜏

∆𝑡

0

 (21)  

Equations (19) and (21) can be computed simultaneously 

by (Kristensen et al. 2004) 

𝑒𝑥𝑝 ([
−𝐴𝑠 𝜎𝜎𝑇

0 𝐴𝑠
𝑇 ] ∆𝑡) = [

𝐻1(∆𝑡) 𝐻2(∆𝑡)
0 𝐻3(∆𝑡)

] (22)  

and combining sub matrices of (22) 

𝛴𝑤 = 𝐻3
𝑇(∆𝑡)𝐻2(∆𝑡) (23)  

𝐴𝑑 = 𝐻3
𝑇(∆𝑡) (24)  

Equation (20) is computed by  

𝐵𝑑 = 𝐴𝑠
−1(𝐴𝑑 − 𝐼)𝐵𝑠 (25)  

However, information in the system (17), (18) are often 

unknown or not measured and have to be estimated. The 

next section gives a theoretical development of a Bayesian 

method for sequentially estimate the states and 

parameters.  

Bayesian estimation 

The following discrete state space (with a general enough 

form to include a large variety of model) is considered 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1, 𝑧) (26)  

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑣𝑘) (27)  

where (26) is the state equation, (27) the output equation, 

𝑥 ∈  ℝ𝑛 the state, 𝑦 ∈  ℝ𝑝 the output, 𝑢 ∈  ℝ𝑚 the input 

and 𝑧 ∈  ℝ𝑞 the static parameter. 𝑤 ∈  ℝ𝑛 and 𝑣 ∈
 ℝ𝑝 are respectively the process and measurement noise 

with covariance 𝛴𝑤  and 𝛴𝑣. The subscript 𝑘 denotes the 

current time step and 𝑘 − 1 the previous one.  

Following the notation of Sarkka (2013), the discrete state 

space (26), (27) can be written in a probabilistic form 

𝑥𝑘  ~ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘−1) (28)  

𝑦𝑘  ~ 𝑝(𝑦𝑘|𝑥𝑘) (29)  

with (28) the conditional probability distribution of the 

current state given the state and input at the previous time 

step and (29) the conditional probability distribution of 

the measurement given the state.  

The state is assumed to be a Markov sequence, which 

means that all information about the current state is 

summarized in the previous state  

𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘−1) = 𝑝(𝑥𝑘|𝑥1:𝑘−1, 𝑢𝑘−1, 𝑦1:𝑘−1) (30)  

where 𝑦1:𝑘−1 = [𝑦1, 𝑦2, … , 𝑦𝑘−1] denotes a set of data. 

Furthermore, the current measurement is independent of 

the state and measurement history 

𝑝(𝑦𝑘|𝑥𝑘) = 𝑝(𝑦𝑘|𝑥1:𝑘, 𝑦1:𝑘−1) (31)  

Firstly, the static parameter vector 𝑧 is assumed known 

and only the state estimation is considered. In a Bayesian 

sense, the purpose is to construct the marginal posterior 

distribution of the state 𝑝(𝑥𝑘|𝑦𝑘). The term posterior 

refers to the knowledge on the state knowing the 

measurement and the term marginal refers to the posterior 

distribution at time 𝑘 given the history of measurements 

up to the time 𝑘.  

Using Bayes’ rule and properties (30) and (31), the 

marginal posterior distribution is given by 

𝑝(𝑥𝑘|𝑦1:𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)

𝑝(𝑦𝑘|𝑦1:𝑘−1)
 (32)  

Equation (32) can be computed recursively by first 

predicting the next state 

𝑝(𝑥𝑘|𝑦1:𝑘−1)

= ∫ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘−1)𝑝(𝑥𝑘−1|𝑦1:𝑘−1)𝑑𝑥𝑘−1 
(33)  

and then updating the prediction with the most recent 

measurement 𝑝(𝑦𝑘|𝑥𝑘). The normalizing factor in (32) is 

defined by 

𝑝(𝑦𝑘|𝑦1:𝑘−1) = ∫ 𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)𝑑𝑥𝑘  (34)  

For discrete linear and Gaussian state spaces, such as 

𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘−1) = 

𝒩(𝑥𝑘|𝐴𝑑(𝑧)𝑥𝑘−1 + 𝐵𝑑(𝑧)𝑢𝑘−1, 𝛴𝑤) 
(35)  

𝑝(𝑦𝑘|𝑥𝑘) = 𝒩(𝑦𝑘|𝐶𝑑𝑥𝑘 , 𝛴𝑣) (36)  

the integrals (33), (34) can be evaluated in closed form by 

the Kalman filter (Sarkka 2013). The recursion starts by 

defining the state prior distribution 𝑝(𝑥0)~𝒩(𝑚0, 𝑃0), 

normally distributed with mean 𝑚0 and covariance 𝑃0. 

The prior distribution represents the knowledge on the 

state before seeing a measurement. The state prior 

distribution at time 𝑘 is 

𝑝(𝑥𝑘|𝑦1:𝑘−1) = 𝒩(𝑥𝑘|𝑚𝑘
−, 𝑃𝑘

−) (37)  

with the prior state mean and covariance given by 

𝑚𝑘
− = 𝐴𝑑𝑥𝑘−1 + 𝐵𝑑𝑢𝑘−1 (38)  

𝑃𝑘
− = 𝐴𝑑𝑃𝑘−1𝐴𝑑

𝑇 + 𝛴𝑤 (39)  

The one-step predictive distribution for the observation is 

𝑝(𝑦𝑘|𝑦1:𝑘−1) = 𝒩(𝑦𝑘|𝐶𝑑𝑚𝑘
−, 𝑆𝑘) (40)  

where the one-step prediction covariance is defined by 

𝑆𝑘 = 𝐶𝑑𝑃𝑘
−𝐶𝑑

𝑇 + 𝛴𝑣 (41)  

By defining the one-step prediction error  

𝑒𝑘 = 𝑦𝑘 − 𝐶𝑑𝑚𝑘
− (42)  

and the Kalman gain 
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𝐾𝑘 = 𝑃𝑘
−𝐶𝑑

𝑇𝑆𝑘
−1 (43)  

the state prior distribution (37) is updated with the current 

measurement to form the marginal posterior distribution 

𝑝(𝑥𝑘|𝑦1:𝑘) = 𝒩(𝑥𝑘|𝑚𝑘 , 𝑃𝑘) (44)  

with the updated mean and covariance 

𝑚𝑘 = 𝑚𝑘
− + 𝑃𝑘

−𝐶𝑑
𝑇𝑆𝑘

−1𝑒𝑘 (45)  

𝑃𝑘 = 𝑃𝑘
− − 𝑃𝑘

−𝐶𝑑
𝑇𝑆𝑘

−1𝐶𝑑𝑃𝑘
− (46)  

The static parameter vector 𝑧 in (35), (36) is now 

considered unknown and it has to be estimated 

simultaneously with the state; the purpose is to construct 

the joint marginal posterior distribution  

𝑝(𝑥𝑘 , 𝑧|𝑦1:𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘 , 𝑧|𝑦1:𝑘−1)

𝑝(𝑦𝑘|𝑦1:𝑘−1, 𝑧)
 (47)  

where the state and parameter are propagated by 

𝑝(𝑥𝑘 , 𝑧|𝑦1:𝑘−1)

= ∫ 𝑝(𝑥𝑘|𝑥𝑘−1 , 𝑢𝑘−1, 𝑧)𝑝(𝑥𝑘−1, 𝑧|𝑦1:𝑘−1)𝑑𝑥𝑘−1 
(48)  

and the normalizing factor of (47) is given by 

𝑝(𝑦𝑘|𝑦1:𝑘−1, 𝑧) = ∫ 𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘 , 𝑧|𝑦1:𝑘−1)𝑑𝑥𝑘 (49)  

However, the parameter vector doesn’t appear linearly in 

the state space (35), (36), therefore (47) cannot be 

computed in closed form and approximation of the 

Kalman filter has to be used, such as the extended Kalman 

filter or the unscented Kalman filter. But these algorithms 

are sub-optimal and can perform poorly for high 

dimensional or strongly non-linear problems. In this 

cases, Monte Carlo approximation is preferred (Doucet et 

al. 2001). The main issue in Bayesian estimation is to 

compute expectations of the form 

𝔼[ℎ(𝑥)] = ∫ ℎ(𝑥)𝑝(𝑥)𝑑𝑥 (50)  

where 𝑝(𝑥) is a probability distribution and ℎ(𝑥) is an 

arbitrary function, for instance the mean value is obtained 

by ℎ(𝑥) = 𝑥 (Cappe et al. 2007).   

Expectations (50) can be approximated by a set 

of 𝑁 random samples {𝑥(𝑖)}
𝑖=1

𝑁
 (particles), drawn from a 

distribution 𝑝(𝑥) 

𝔼[ℎ(𝑥)] ≈
1

𝑁
∑ ℎ(

𝑁

𝑖=1

𝑥(𝑖)) (51)  

For the purpose considered here, 𝑝(𝑥) is the joint 

marginal posterior distribution of the state and parameter 

(47). But it is not possible to sample directly from (47) 

due to its complicated form. The idea is to use an alternate 

distribution 𝑞(𝑥) (importance distribution) where it is 

easier to sample from (Chen 2003). The samples are 

weighted by the importance weights 𝜔(𝑖) in order to take 

into account the discrepancy between the posterior 

distributions (47) and the importance distribution 𝑞(𝑥) 

𝜔(𝑖) =
𝑝(𝑥(𝑖))

𝑞(𝑥(𝑖))
 (52)  

Hence, the expectation (51) is given by 

𝔼[ℎ(𝑥)] ≈ ∑ 𝜔(𝑖)ℎ(

𝑁

𝑖=1

𝑥(𝑖)) (53)  

The importance weights can be computed sequentially by 

first writing that (47) is proportional to  

𝑝(𝑥𝑘 , 𝑧|𝑦1:𝑘)
∝ 𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘−1, 𝑧)𝑝(𝑥𝑘−1, 𝑧|𝑦1:𝑘−1) 

(54)  

then if the importance distribution 𝑞(𝑥) is chosen such 

that it can be factorized similarly, the importance weights 

are given by (Cappe et al. 2007) 

𝜔𝑘
(𝑖)

∝
𝑝(𝑦𝑘|𝑥𝑘

(𝑖)
)𝑝(𝑥𝑘

(𝑖)
|𝑥𝑘−1

(𝑖)
, 𝑢𝑘−1, 𝑧(𝑖))

𝑞(𝑥𝑘
(𝑖)

|𝑥𝑘−1
(𝑖)

, 𝑢𝑘−1, 𝑧(𝑖), 𝑦1:𝑘)
𝜔𝑘−1

(𝑖)  (55)  

The proportionality in (54) comes from the fact that the 

normalizing factor (49) has been neglected, therefore the 

importance weights are only known up to a normalizing 

constant and have to be normalized 

𝜔𝑛
(𝑖)

=
𝜔(𝑖)

∑ 𝜔(𝑖)𝑁
𝑖=1

 (56)  

A particle approximation of the joint marginal posterior 

distribution (47) is obtained by sampling from the 

importance distribution 𝑞(𝑥) and then updating the 

weights with (55). However this method suffers from 

particle degeneracy (Doucet et al. 2001), which means 

that all the particles have a negligible weight; thus the 

posterior distribution is approximated only by a few 

particles. This problem is solved by using a resampling 

step, where the particles with small weights are discarded 

and particles with large weights are duplicated to keep a 

number of particle constant.  

This method is efficient if a sufficient number of particles 

generated from the importance distribution are in high 

probability region of the posterior distribution. A popular 

choice of importance distribution is the state transition 

distribution (28), which leads to the bootstrap filter 

(Gordon et al. 1993) but an optimal choice is the one that 

minimizes the variance of the importance weights 

𝑞(𝑥𝑘
(𝑖)

|𝑥𝑘−1
(𝑖)

, 𝑢𝑘−1, 𝑧(𝑖), 𝑦𝑘)

=
𝑝(𝑦𝑘|𝑥𝑘

(𝑖)
)𝑝(𝑥𝑘

(𝑖)
|𝑥𝑘−1

(𝑖)
, 𝑢𝑘−1, 𝑧(𝑖))

𝑝(𝑦𝑘|𝑥𝑘−1
(𝑖)

, 𝑧(𝑖))
 

(57)  

Using (57) in (55), the importance weights are computed 

by 

𝜔𝑘
(𝑖)

∝ 𝑝(𝑦𝑘|𝑥𝑘−1
(𝑖)

, 𝑧(𝑖)) 𝜔𝑘−1
(𝑖)  (58)  

Hence the particles are resampled according to the 

predictive likelihood 𝑝(𝑦𝑘|𝑥𝑘−1, 𝑧) which means that, the 

particles will be propagated in high probability region of 

the state space. The optimal importance distribution (57) 

is available only when the process and measurement noise 
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are additive white noises and the output equation is linear 

(Arulampalam et al. 2002); which is the case for the model 

(35), (36). The efficiency of the method can be further 

improved by exploiting the linear Gaussian substructure 

of the model (35), (36). Thanks to the Bayes’ theorem, the 

joint marginal posterior distribution can be split such that 

𝑝(𝑥𝑘 , 𝑧|𝑦1:𝑘) = 𝑝(𝑥𝑘|𝑧, 𝑦1:𝑘)𝑝(𝑧|𝑦1:𝑘) (59)  

therefore the state posterior distribution can be integrated 

out using the Kalman filter (Schön & Gustafsson 2003). 

This technic provides better estimates because the 

dimension of 𝑝(𝑧|𝑦1:𝑘) is smaller than 𝑝(𝑥𝑘 , 𝑧|𝑦1:𝑘), so 

the particles represent a lower dimensional space and the 

estimation of 𝑝(𝑥𝑘|𝑧, 𝑦1:𝑘) by the Kalman filter is 

optimal.   

As mentioned in the second section, the parameters 

evolution has to be specified. A common strategy is to add 

an artificial dynamic (Kantas et al. 2015)  

𝑧𝑘 = 𝑧𝑘−1 + 𝑤𝑧𝑘−1
 (60)  

where 𝑤𝑧𝑘−1
~ 𝒩(0, 𝛴𝑧) is a white noise process with 

decreasing variance. The time step subscript in the 

parameter notation helps to distinguish values between 

two time steps and doesn’t represent time varying 

parameters. However, this strategy requires a significant 

amount of tuning to perform satisfactory. To overcome 

these issues, the kernel density method (Liu & West 2001) 

can be employed. The marginal posterior distribution of 

the parameters (59) is approximated by a mixture of 

Gaussian distributions 

𝑝(𝑧𝑘|𝑦1:𝑘) ≈ ∑ 𝜔𝑘
(𝑖)

𝒩(𝑧𝑘
(𝑖)

|𝜂𝑘
(𝑖)

, ℎ2𝑉𝑘−1)

𝑁

𝑖=1

 (61)  

with 𝜔𝑘
(𝑖)

 the importance weights and ηk the kernel 

location given by  

𝜂𝑘
(𝑖)

= 𝑎𝑧𝑘−1
(𝑖)

+ (1 − 𝑎)𝑧�̅�−1 (62)  

and the constant 𝑎 controls the shrinkage of the particles 

toward the Monte Carlo mean 𝑧̅ 

𝑧�̅�−1 = ∑ 𝜔𝑘−1
(𝑖)

𝑧𝑘−1
(𝑖)

𝑁

𝑖=1

 (63)  

The particles are propagated according to the Monte Carlo 

variance  

𝑉𝑘−1 = ∑ 𝜔𝑘−1
(𝑖)

(𝑧𝑘−1
(𝑖)

− 𝑧�̅�−1)(𝑧𝑘−1
(𝑖)

− 𝑧�̅�−1)𝑇

𝑁

𝑖=1

 (64)  

where the constant ℎ controls the degree of particles 

dispersion. The constants 𝑎 and ℎ are determined by  ℎ2 =

1 − (
3δ−1

2δ
)2 and 𝑎 = √1 − ℎ2 where 𝛿 is usually chosen 

between 0.95 and 0.99 (Liu & West 2001). The Monte 

Carlo variance (64) decreases over time because the 

particles are slightly pushed toward their overall mean and 

because the particles are resampled. The kernel density 

method is employed with a resample-propagate scheme; 

the particles are resampled according to the predictive 

likelihood (58), such that only promising particles are 

propagated. The sequential algorithm for estimating the 

states and parameters for the state space (35), (36) is given 

in Algorithm 1. This algorithm has been evaluated in 

simulation but the results are not presented here due to the 

limited size of the paper; only the results on a real test case 

are presented in the next section.  

 

 

Algorithm 1 

1.  Kernel location  

𝑧�̅�−1 = ∑ 𝜔𝑘−1
(𝑖)

𝑧𝑘−1
(𝑖)

𝑁

𝑖=1

 

𝜂𝑘
(𝑖)

= 𝑎𝑧𝑘−1
(𝑖)

+ (1 − 𝑎)𝑧�̅�−1 

𝑉𝑘−1 = ∑ 𝜔𝑘−1
(𝑖)

(𝑧𝑘−1
(𝑖)

− 𝑧�̅�−1)(𝑧𝑘−1
(𝑖)

− 𝑧�̅�−1)𝑇

𝑁

𝑖=1

 

2. Compute importance weights 

𝑒𝑘 = 𝑦𝑘 − 𝐶𝑑(𝐴𝑑(𝜂𝑘
(𝑖)

)𝑥𝑘−1
(𝑖)

+ 𝐵𝑑(𝜂𝑘
(𝑖)

)𝑢𝑘−1) 

𝑆𝑘
(𝑖)

= 𝐶𝑑 (𝐴𝑑(𝜂𝑘
(𝑖)

)𝑃𝑘−1
(𝑖)

𝐴𝑑(𝜂𝑘
(𝑖)

)
𝑇

+ 𝛴𝑤) 𝐶𝑑
𝑇 + 𝛴𝑣 

𝜔𝑙𝑜𝑔𝑘

(𝑖) ∝  −
1

2
𝑙𝑜𝑔(|𝑆𝑘

(𝑖)
|) −

1

2
𝑒𝑘

𝑇(𝑖)
𝑆𝑘

−1(𝑖)
𝑒𝑘

(𝑖) 

3. Normalize the importance weights 

𝜔𝑘
(𝑖)

= 𝑒
 (𝜔𝑙𝑜𝑔𝑘

(𝑖)−𝑚𝑎𝑥(𝜔𝑙𝑜𝑔𝑘
(𝑖))) 

 

𝜔𝑛𝑘

(𝑖)
=

𝜔𝑘
(𝑖)

∑ 𝜔𝑘
(𝑖)𝑁

𝑖=1

 

4. Resample 

Sample indices {𝑘1, 𝑘2, … , 𝐾𝑁} from  𝑖 =

{1,2, … , 𝑁} with probabilities  𝜔𝑛𝑘

(𝑖) 

5. Propagate parameters 

𝑧𝑘
(𝑖)

~ 𝒩(𝜂𝑘
(𝑘𝑖)

, ℎ2𝑉𝑘−1) 

6. Kalman filter prediction  

𝑚𝑘
−(𝑖) = 𝐴𝑑(𝑧𝑘

(𝑖)
)𝑚𝑘−1

(𝑘𝑖)
+ 𝐵𝑑(𝑧𝑘

(𝑖)
)𝑢𝑘−1  

𝑃𝑘
−(𝑖) = 𝐴𝑑(𝑧𝑘

(𝑖)
)𝑃𝑘−1

(𝑘𝑖)
𝐴𝑑(𝑧𝑘

(𝑖)
)

𝑇
+ 𝛴𝑤 

7. Kalman filter measurement update 

𝑆𝑘
(𝑖)

= 𝐶𝑑𝑃𝑘
−(𝑖)𝐶𝑑

𝑇 + 𝛴𝑣 

𝑚𝑘
(𝑖)

= 𝑚𝑘
−(𝑖) + 𝑃𝑘

−(𝑖)𝐶𝑑
𝑇𝑆𝑘

−1(𝑖)
(𝑦𝑘 − 𝐶𝑑𝑚𝑘

−(𝑖))  

𝑃𝑘
(𝑖)

= 𝑃𝑘
−(𝑖) − 𝑃𝑘

−(𝑖)𝐶𝑑
𝑇𝑆𝑘

−1(𝑖)
𝐶𝑑𝑃𝑘

−(𝑖) 

 

 



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

81

Test case 

Each room in the south zone was monitored with three 

temperature sensors at 10 cm, 110 cm and 170 cm from 

the ground to measure the stratification of the air. The 

discrepancy between the three heights is important and 

almost 4 °C separate the top and the bottom. Each space 

has been chosen to be the average of the three heights and  

the south zone temperature 𝜃𝑖 (output) is computed as the 

average of the different spaces (living room, south 

bedroom, corridor and bathroom, Figure 1) weighted by 

their respective volumes; the same method is used for the 

north zone 𝑇𝑧 (kitchen, lobby and north bedroom, Figure 

1). The air temperature supplied by the ventilation 𝑇𝑣 is 

also used as an input because the air supplied is warmer 

than the outdoor air temperature 𝑇𝑜. The solar radiations 

on the outside wall surfaces �̇�𝑜, and through the windows 

�̇�𝑖 are the sum of the measured vertical solar radiations 

multiplied by the corresponding wall and window 

surfaces. The heating in the south zone is done by three 

electric heaters; therefore �̇�𝐻𝑉𝐴𝐶 is chosen as the sum of 

their emitted powers. All the measured data used for the 

sequential estimation of the states and parameters are 

shown in Figure 3. The data set is 14 days long with 

1 hour sampling time. The first plot in Figure 3 contains 

the temperatures [°C] of, from top to bottom, the south 

zone 𝜃𝑖, the north zone 𝑇𝑧, the ventilation 𝑇𝑣 and the 

outdoor 𝑇𝑜. The second plot in Figure 3 is the power 

supplied by the electric heaters �̇�𝐻𝑉𝐴𝐶 [kW] and the third 

plot contains the solar radiations [kW] received on the 

outside wall surfaces �̇�𝑜, and through the windows �̇�𝑖.  

The south zone temperature is relatively high to maximize 

the temperature difference with the outdoor and the 

adjacent spaces; this is not an issue since the building is 

unoccupied.  

The building characteristics given by Strachan et al. 

(2016) are used to define the prior distributions of the 

parameters (Table 2). 

 

 

 

Figure 3: Measured data for identification 

The total thermal capacity of the envelope is the sum of 

the thermal capacities of the 𝑛 wall of 𝑚 levels of 

insulation 

𝐶𝑤 = ∑ ∑ 𝜌𝑖𝑐𝑖𝛿𝑖𝑆𝑗

𝑚

𝑖=1

𝑛

𝑗=1

= 1.307 J/K (65)  

where 𝜌 [kg/m3] is the density, 𝛿 [m] is the thickness, 
𝑐 [J/kg K] is the specific heat and 𝑆 [m2] is the wall 

surface. 

Similarly, the thermal resistance of the envelope is  

𝑅𝑤 = (∑ (∑
𝛿𝑖

𝜆𝑖𝑆𝑗

𝑚

𝑖=1

)

−1𝑛

𝑗=1

)

−1

= 9.04−2 K/W (66)  

where 𝜆 is the conductivity [W/m K]. 

The thermal resistance of the infiltrations is computed 

from the pressurization test at 50 Pa 

𝑅𝑖 = (
𝜌𝑎𝑐𝑎𝑁𝑎𝑐ℎ𝑉

3600
)

−1

= 1.30−2 K/W (67)  

where 𝜌𝑎  and 𝑐𝑎 are the density and the specific heat of 

the air, 𝑁𝑎𝑐ℎ  is the number of air changes per hour and 𝑉 

is the volume of the south zone.  

This test indicates infiltration rates not only through the 

envelope but also through the adjacent zone and 

boundaries; therefore the air change rate is expected to be 

lower for the south zone only. The air flow rate of the 

ventilation is constant and fixed at 60 m3/h. The air 

temperature of the ventilation and the indoor air 

temperature are measured; therefore the heat transfer rate 

due to mass flow �̇�𝑣 introduced into the south zone is 

𝑞𝑣 = �̇�𝑣𝑐𝑎(𝑇𝑣 − 𝜃𝑖) = 𝜌𝑎

60

3600
𝑐𝑎(𝑇𝑣 − 𝜃𝑖) (68)  

Thus, the resistance 𝑅𝑣 is fixed to 

𝑅𝑣 = (𝜌𝑎

60

3600
𝑐𝑎)

−1

= 4.98−2 K/W (69)  

The resistance and the thermal capacity of the wall 

separating the two zones are respectively 

𝑅𝑧 =
1

𝑅𝑤𝑖1

+
3

𝑅𝑑𝑜𝑜𝑟

+
1

𝑅𝑤𝑖2

= 1.34−2 K/W (70)  

𝐶𝑧 = 𝐶𝑤𝑖1
+ 3𝐶𝑑𝑜𝑜𝑟 + 𝐶𝑤𝑖2

= 3.866 J/K (71)  

with the subscripts 𝑤𝑖1 and 𝑤𝑖2 denoting respectively the 

south wall of the living room and the south wall of 

corridor and bathroom. 

The indoor capacity includes the air and the inner walls  

𝐶𝑖 = 𝜌𝑎𝑐𝑎𝑉 + 𝐶𝑖𝑤1
+ 𝐶𝑖𝑤2

= 6.216 J/K (72)  

where the subscripts 𝑖𝑤1 and 𝑖𝑤2 correspond respectively 

to the east wall of the living room and the other light walls. 

The air temperature in the attic and the cellar is relatively 

constant, therefore the interactions with these boundaries 

have been neglected. However, a part of the ceiling and 

the ground floor capacity has to be taken into account 
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into 𝐶𝑖. The ground and the ceiling thermal capacities are 

computed similarly to (65) and the boundary thermal 

capacity is defined by 

𝐶𝑏 = 𝐶𝑔 + 𝐶𝑐 = 7.407 J/K (73)  

Hence, the indoor capacity can be reasonably expected to 

be between (72) and (72) plus the half of (73). 

The outdoor and indoor air convection resistances are 

determined as follow 

𝑅𝑠𝑜 = (∑ ℎ𝑠𝑜𝑆𝑗

𝑛

𝑗=1

)

−1

= 1.07−3 K/W (74)  

𝑅𝑠𝑖 = (∑ ℎ𝑠𝑖𝑆𝑗

𝑛

𝑗=1

)

−1

= 7.14−3 K/W (75)  

with ℎ𝑠𝑜 = 20 and ℎ𝑠𝑖 = 3 the outside and inside heat 

convection coefficients [W/m2K].  

The thermal resistance of the envelope is defined by 

𝑅𝑇 = (∑ (
1

ℎ𝑠𝑜

+
1

ℎ𝑠𝑜

+ ∑
𝛿𝑖

𝜆𝑖

𝑚

𝑖=1

)

−1𝑛

𝑗=1

)

−1

 (76)  

By using the same material properties as in (66), ℎ𝑠𝑖 = 3 

and ℎ𝑠𝑜 = 20, the thermal resistance of the envelope 

equals to 𝑅𝑡 = 1.54 m2. K/W. It is assumed that the 

convection coefficients can take values between ℎ𝑠𝑜 =
[4 , 24] and ℎ𝑠𝑖 = [2 , 8]. The use of these lower and 

upper values in (76), introduces respectively a variation 

of  8.08%  and  −4.79%  w.r.t  𝑅𝑡 = 1.54 m2. K/W. 

Therefore, it seems reasonable to fix these parameters 

instead of increasing the parameters space.  

The prior distributions of the parameters were chosen to 

be normally distributed with means and standard 

deviations given in Table 2 and shown in Figure 4. The 

prior distributions represent the knowledge and 

confidence on the initial parameter values. The 

measurement and process noises are not estimated but 

instead fixed and assumed to be small because the hourly 

data used are averages of data of one minute sampling 

time. The process and measurement covariance are 

directly tune in discrete time with the following values 

 𝛴𝑤 = (
10−3 0 0

0 10−3 0
0 0 10−3

) (77)  

 𝛴𝑣 = 10−4 (78)  

The prior distribution of state is defined with the 

respective state mean and covariance 

𝜃0 = [19 29.84 27] 𝑇 (79)  

𝑃0 = (
0.52 0 0

0 0.052 0
0 0 0.52

) (80)  

The previous measurement has been used to initialize the 

value of 𝜃𝑖  in (79). 

Table 2: Mean and 3 standard deviations of the prior 

and posterior distributions of the parameters 

 

The discount factor of the kernel density method (61) has 

been set to 𝛿 = 0.9 and a number of 𝑁 = 2000 particles 

has been used. The estimated states are shown in Figure 5 

where the estimated south zone temperature 𝜃𝑖 follows 

precisely the measurement, both signals cannot be 

distinguished in the plot. The estimated states stay in a 

physical range but the wall temperature 𝜃𝑤  contains fast 

variations due to switching sequence of the heaters which 

are not present in the wall separating the south and north 

zone 𝜃𝑧; this is unlikely because the thermal capacity 𝐶𝑧 is 

smaller than 𝐶𝑤.  

The parameters posterior distributions are plotted in 

Figure 4 and their properties are given in Table 2. The 

standard deviations of the posterior distributions are 

considerably smaller than the prior distributions (Figure 

4). However, the posterior distributions are included in the 

prior distributions which can indicate a good initialization 

or a lack of exploration in the parameters space. 

Consequently, the estimated parameters belong to the 

physical range used to initialize the algorithm.   

 

 

Figure 4: Prior (white) and posterior (blue) distributions 

of the parameters 

 𝑷𝒓𝒊𝒐𝒓 𝑷𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 

 𝒎𝒆𝒂𝒏 𝟑 𝝈 𝒎𝒆𝒂𝒏 𝟑 𝝈 

𝑅𝑖 5.00−2 2.10−2 3.49−2 6.42−4 

𝑅𝑤 9.00−2 9.00−3 9.23−2 2.27−4 

𝑅𝑧 1.30−2 2.70−3 1.12−2 1.30−4 

𝛼 3.50−1 9.00−2 3.51−1 2.19−3 

𝐶𝑤 1.307  1.506 1.237 7.574 

𝐶𝑖 1.507 3.006 1.707 4.614 

𝐶𝑧 3.906 2.105 3.806 8.463  
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Figure 5: Estimated states, top to bottom: wall 𝜃𝑤, south 

zone 𝜃𝑖 (estimated and measured) and boundary wall 𝜃𝑧 

A new data set, starting right after the identification data 

set (Figure 3) has been used to test the simulation 

capabilities of the sequentially learnt model. The inputs 

introduced in the model are shown in Figure 6 and the 

simulated output distribution of the south zone 

temperature is compared to the measured one in Figure 7. 

The order of the signals in Figure 6 is the same as in 

Figure 3 without the south zone temperature. The model 

simulation gives satisfactory results: the measured south 

zone temperature is often contained in the simulated 

output distribution of the model. Nonetheless, the model 

is not able to explain the fast variations, especially when 

the heaters switch on at the beginning of the simulation 

data set. A one-step prediction error analysis has been 

used to check the validity of the model. The Kalman filter 

has been run on the identification data set with the 

parameters fixed to the posterior mean distribution (Table 

2) in order to obtain the one-step prediction error (42).  

 

 

Figure 6: Measured data for simulation 

 

Figure 7: Simulated output distribution (blue) and 

measured south zone temperature 

 

The autocorrelation function and the cumulated 

periodogram test have shown that the one-step prediction 

error is not white noise which means that a better model 

structure has to be chosen (Madsen 2007). Furthermore, 

the one-step prediction error is correlated with the heating 

and the solar radiations, which means that the model is not 

fully able to explain these input-output relationships. This 

explains the discrepancy between the simulated and 

measured temperature (Figure 7) when the heaters switch 

on.   

Conclusion  

Experimental identification of grey box models may be 

time consuming and requires to first collect the data, 

therefore the monitoring time is not put in good use. This 

paper has investigated the capabilities of learning models 

sequentially with a method based on sequential Monte 

Carlo. The proposed algorithm has been tested on an 

unoccupied building under real weather conditions. The 

algorithm was initialized with the buildings 

characteristics and two weeks of data were used to learn 

the model. The estimated states and parameters are 

located in likely physical ranges; however the model 

validation tests indicate that a better model structure may 

be chosen. Indeed, the identified model is not able to 

properly interpret the internal gains. Despite this fact, the 

simulation capabilities of the identified model are 

relatively satisfactory and this is mostly due to the 

physical knowledge introduced in the model. Even if the 

sequentially learnt model failed the validation tests, it 

succeeds to provide insights for model refinements with 

the full data set.  
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