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ABSTRACT 

This paper presents a new approach to calibrate air 
handling unit models. This approach studies every 
heat exchanger component separately based on the 
inverse problem framework, the Preisach model of 
hysteresis and machine learning techniques. For each 
component model, the first step is to solve the inverse 
problem in order to calculate the optimal control 
signal that generates the output values expected from 
real data. Then, a modified Preisach model is 
calibrated using machine learning techniques where 
the input-output pair samples correspond to the actual 
control signal taken from the real data and the optimal 
values obtained from the previous step. The last step 
is coupling both the first principle based model of the 
heat exchanger and the calibrated Preisach model. 

A detailed case study is presented. 

INTRODUCTION 
Nowadays, optimisation of heating, ventilation and air 
conditioning (HVAC) systems operation has become 
an active research field due to the demanding energy 
efficiency goals in buildings (European Parlanment 
and Council of the European 2010). Therefore, recent 
developments in modelling and simulation 
methodologies and software enable HVAC models 
simulation to support buildings operation. This 
provides a reliable test bed on which engineers can 
carry experiments avoiding the risks associated with 
doing them on the physical system. Although 
modelling approaches seem to be converging to a 
structured framework depending on the particular 
application, the calibration of HVAC models remains 
an open research area. 
The calibration process can be divided in two key 
parts, the calibration methodology per se and the 
validation of the calibration results using the 
appropriate metrics. This research work focuses on the 
development of a novel automated calibration 
methodology for HVAC components and its 
implementation. 

THE MODELS 
This paper studies air-handling units (AHU) with 
constant air volume and their typical components, i.e. 
mixing box, cooling coil, heating coil and humidifier. 
As in some grey box approaches, each component’s 

model consists of two sub-models: a white-box (WB) 
that takes into account prior knowledge of the physical 
behaviour of system (e.g. first principle equations 
defining the interactions between elements); and a 
black-box (BB) that models the input-output 
relationships without any physical interpretation. The 
heat exchanger (HX) model –based on first principles– 
represents the WB, and the control element –based on 
the Preisach model of hysteresis– corresponds to the 
BB. 
Figure 1 shows the division in two sub-model of the 
heating/cooling coil model. 

Heat exchanger models 

Usually, an AHU comprises a combination of the 
following components: mixing box (MB), cooling and 
dehumidification coil (CC), heating coil (HC), 
humidifier (H), ducts, filters, fans, temperature 
sensors (T), relative humidity sensors (RH), air 
velocity sensors (AV) and actuators (%), as shown in 
Figure 2. The focus of this research work is the so-
called active elements used for changing the air 
temperature in the AHU, i.e. MB, CC and HC. They 
are briefly described in this section, however, a more 
detailed description was presented in (Febres et al. 
2013). 
The following assumptions are considered: 

 Ducts and filters have negligible effects on 
air temperature; 

Figure 1. Heating/cooling coil example 
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 Fans cause a constant air temperature 
increment and has no effect on the air 
humidity ratio; 

 The humidifier causes a negligible air 
temperature increment and has effect just on 
the air humidity ratio; 

 Both air and water are incompressible ; 

 Steady and adiabatic conditions. 

The mixing box component is modelled using Eq. 1 
to Eq. 5 (Tashtoush et al. 2005). They describe the 
energy and mass balance between the mixing air 
streams. 
To calculate the mass flow rate of the air outlet it is 
used a simple mass balance equation: 
 

mflowO = mflow1 + mflow2 Eq. 1 

The mass flow rate variables, mflow1 and mflow2, are 
defined by: 
 

mflow1 = mflowI1*damp_position Eq. 2 

mflow2 = mflowI2*(1-damp_position) Eq. 3 

where damp_position is the control signal. 
Finally, the output temperature and humidity ratio are 
computed using the following energy balance 
equations: 
 

mflowI1*TI1 + mflowI2*TI2 = mflowO*TO Eq. 4 

mflowI1*WI1 + mflowI2*WI2 = mflowO*WO Eq. 5 

The heating coil model is derived from (ASHRAE 
2009). It calculates the outlet steady-state conditions 

in both, water and air sides, using equations derived 
from the principles of energy and mass conservation 
and the definition of heat transfer effectiveness in the 
classical eff-NTU method given by: 
 

Q = Ca*(TaO-TaI) Eq. 6 

Q = Cw*(TwO-TwI) Eq. 7 

Q = eff*min(Ca, Cw)*(TwI-TaI) Eq. 8 

The effectiveness eff equation depends on the coil 
configuration, i.e. parallel flow, counter flow or cross 
flow with both streams unmixed. 
The cooling/dehumidifier coil model is based on 
dry/wet model presented in (Lemort 2008). It 
computes two operation regimes, fully dry and fully 
wet. Initially, the model calculates the cooling 
capacity for both regimes, and then the regime with 
the lowest capacity is discarded while the regime with 
highest capacity is chosen as the actual regime for 
further energy calculations. 
In dry regime, the outlet steady-state conditions in 
both sides (water and air) are calculated using the 
heating coil model previously presented. Wet regime 
model uses the same equations, but the wet-bulb air 
temperature substitutes the air temperature variable. 
This approach is based on the assumption that the air 
is a perfect gas, thus its enthalpy is fully defined by the 
wet bulb temperature. In addition, the variables Ca and 
eff from Eq. 6 and Eq. 8 are calculated assuming the 
coil is a semi-isothermal heat exchanger. 

Control element model 

Typically, actuators such as valves or dampers control 
the components under study. They represent the 
control element, which is often characterised as a 

Figure 2. Air handling unit schematic 
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non-linear element showing hysteresis behaviour. A 
suitable representation of the hysteresis is provided by 
the Preisach model of hysteresis in its discrete version 
(Tan et al. 2001). This hysteresis model can be seen as 
a linear combination of the nonlinear functions 
(named hysterons) as shown in Figure 3. In addition, 
by fixing the defining parameters of the hysteron 
function (α and β in Figure 3), the Preisach model can 
be considered as a linear neural network (LNN) 
where each hysteron is a neuron and the coefficients 
are the weights of the network. In this way, machine 
learning techniques can be used to automate the 
calibration process of the valve or damper model. 

THE METHODOLOGY 
Figure 4 shows a general overview of the whole 
procedure including development of the models for 
both, heat exchangers and control elements, and the 
automated calibration process. First, the theoretical 
models have to be formulated for both, the heat 
exchanger and the valve. Second, the formulated 
models need to be implemented in the form of 
computational models (step 1 in figure). Third, a pre-
calibration process for the coils is performed (step 2 in 
figure). Finally, the fine calibration is completed in 
steps 3 to 5. 

Data collection 

In order to use the proposed methodology, two sources 
of data are required. First, the heat exchanger pre-
calibration process needs the manufacturer data-sheets 
in step 2. Second, step 4 requires operational data from 

the data-collecting framework (normally the BMS) in 
order to carry out the control element calibration. 

Model formulation 

As mentioned, the heat exchanger model is based on 
first principles, i.e. mass and energy balance equations 
while the control element model is an adaptation of 
Preisach hysteresis model in its discrete version 
incorporating LNN concepts. 

Step 1. Models implementation 

Once the theoretical models are formulated, both heat 
exchanger and control element (named as HX_Mo and 
H_Py in Figure 4, respectively) have to be 
implemented in some computational language. In this 
research work, the former was implemented in 
Modelica, which is a programming language 
specialised in first principle based models modelling. 
The later was coded using Python due to its data-
processing capabilities particularly suitable for 
machine learning applications. 

Step 2. Heat exchanger pre-calibration 

The heating and cooling coils require a pre-
calibration. They need initial parameter values in 
order to run, i.e. a minimal data set is required. 
Opportunely, the manufacturer’s data sheet provides 
the required information, which is used as model 
parameters in the Modelica models (Pre_HX in Figure 
4). 

Figure 3. Discrete Preisach model of hysteresis. Top: 
discrete relay hysteron Rα,β. Bottom: linear 
combination of a finite number of hysterons 

Figure 4. Proposed Methodology 
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Step 3. Optimal control signal computation 

In order to calibrate the control element model, it is 
first necessary to find the optimal values for the 
control variables. Those values are so that the 
difference between simulated and measured output 
variables remains within a fixed tolerance for every 
sample taken from the calibration data set. In other 
words, getting the optimal values is equivalent to 
solving the inverse problem for the heat exchanger 
model (find the inputs given the outputs). Table 1 
shows the corresponding control and output variables 
for the components under study. 
 

Table 1. Control and output variables for each 
component 

Component Control 
variable 

Output 
variable 

Mixing box Damper 
position 

Outlet air 
temperature 

Heating/cooling 
coil 

Water mass 
flow rate 

Outlet air 
temperature 

Humidifier Steam mass 
flow rate 

Outlet air 
humidity 

In some cases, Modelica tools can solve the inverse 
problem. However, this is not necessarily possible in 
models that include a high non-linearity, e.g. where 
complex combinations of if-then-else statements are 
used. 

To provide a generic solution, this paper proposes to 
consider the problem as a discrete control problem. 
Consider the control system in Figure 6: 

 The plant P is the heat exchanger (white-box) 
model; 

 The signal U is the corresponding control 
variable; 

 The controlled variable Y is the output 
variable from the component model; 

 The reference signal R is the measured (and 
expected) value of the output variable from 
calibration data. 

The idea is to find U so the error is within a fixed 
tolerance Ɛ for each value of R taken from the 
calibration data set.  
This process corresponds with step 3 in Figure 4 where 
the resulting values of U are stored as U*. 
Finding U requires an iterative procedure depicted in 
Figure 5 and summarized as follows: 

1. U* is initialized as an empty vector with length 
equal to the number of samples used for the 
model calibration; 

2. One sample from the calibration data set is taken 
and used as the reference signal R for controlling 
the process until the error between Y and R is 
below the tolerance; 

3. Once this happens, the current value of the 
control signal U is stored in U*; 

4. Repeat steps 2 and 3 until for every sample in the 
ser. 

Although the pre-calibrated model was implemented 

using Modelica, the process described above was 
coded in Python using a Python/Modelica middleware 
developed for co-simulation purposes presented in 
(Febres et al. 2014). Since the process involves the use 
of both, Python and Modelica, this task is in between 
Modelica development and Python development in 
Figure 4. 

Step 4. Control element calibration 

As previously stated, the control element model is 
based on the Preisach model of hysteresis and machine 
learning concepts. For this research work, the control 
element calibration process was performed using a 
supervised learning approach, more in particular using 
linear least squares and its normal equations (Orr 
1996). The training set is defined by input-output pair 
values of O and U*, where O is the control signal 

Figure 6. Control system diagram 

Figure 5. Optimal control signal computation 
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(Table 2) taken from the BMS calibration data set and 
U* is the optimal control signal found in step 3. 

Table 2. Control signal from data set for each 
component 

Component Control signal 
Mixing box Damper opening 
Heating/cooling coil Valve position 
Humidifier Valve position 

Step 5. Model coupling 

The final step in the model calibration process consists 
in coupling both, the pre-calibrated heat exchanger 
model and the calibrated control element model. Since 
the HX model is implemented in Modelica and the 
control element model in Python, the final coupling is 
performed making use of the same Python/Modelica 
interface used in step 3. 

CASE STUDY 
The case study is the air-handling unit (AHU) depicted 
in Figure 2. The AHU serves a facility consistent of an 
audio laboratory of around 50 m2, where strict 
conditions of temperature and humidity must be met. 
The building is located in the city of Cork in the 
Republic of Ireland. 
The unit under study is a reasonably well instrumented 
AHU making it suitable for research purposes. The 
available sensors can be seen in Figure 2, where ‘T’ 
stands for temperature sensor; ‘RH’ for relative 
humidity sensor, ‘AV’ for air volumetric flow rate 
sensor and ‘%’ represents the opening of valves and 
dampers. The signals and sensors data is recorded by 
the building management system (BMS) with a 
frequency of one minute per sample. 
All simulations were performed using a personal 
computer with a 2.8 GHz dual-core processor and 8 
GB in RAM. Dymola 2013 FD01 (64-bit) as Modelica 
IDE and Python 2.7 were used in this paper.  

Data collection and pre-processing 

In order to capture the hysteresis behaviour of the 
control element, experiments were set up spanning the 
whole range of possible control variable values 

(valves and damper position). Starting at the 
completely closed position, the valve (or damper) is 
incrementally open in steps of 10% every 10 minutes. 
Once it is completely open, the control signal is 
decreased at the same rate, i.e. 10% every 10 minutes. 
The spanning process finishes when the valve (or 
damper) is completely closed once again. This process 
was performed twice for each component (Figure 7). 
Since the models are based on steady-state equations, 
the calibration data had to be filtered. A moving 
window steady-state detector was used for this task. 
This algorithm uses the standard deviation of the 
moving window in order to detect system steady-state 
and calculates it in a recursive fashion (Kim et al. 
2008). 

Models implementation 

For the implementation of the control element model, 
the input space of the valve and damper (i.e. [0,1]) was 
discretized into 50 partitions of equal lengths (i.e.  
steps of 0.02). In the neural network implementation 
of the control element (see Figure 3), a neuron is 
created per each possible (α, β) pair. By partitioning 
the input space in 50, the resulting number of neurons 
(hysterons or relays) is given by the combination 

  resulting in 1275 relay units. To this, a bias unit 
is added as it isstandard practice in neural networks for 
a total neuron count of 1276. The number of partitions 
was selected as a trade-off between expected accuracy 
and computational resources needed to train the neural 
network. 
For the implementation of the component models, 
manufacturer information and physical quantities used 
as parameters for each component are presented in 
Table 4 

Optimal control signal computation 

A tolerance Ɛ of 0.1%, of the expected value Y , in the 
error between R and Y was defined in order to find U*. 
The optimisation process was carried out iteratively by 
using the bisection method. 
To avoid any inconsistency in the calibration data, 
only the working hours of the unit were taken into 
account during this process. Hence, the calibration 
was done using samples where the fan was turn on, i.e. 
the air flow rate was greater than or equal to 1.0 m3/s. 

Control element calibration 

The model was trained using an active set algorithm 
to solve the non-negative linear least square problem 
(Lawson & Hanson 1995). 
Figure 9 shows the resulting hysteresis for each 
component after calibration. Different aspects can be 
noticed in the graphs. The actual opening of the loop, 
the point where the signal starts to increase, the point 
where it stops increasing, etc. It is clear how these 
plots can provide a limited but useful information 
about health status of the control elements. For 
example, on the top graph, the mixing box damper 
presents a very wide loop which, usually, is a sign of 
malfunctioning due to damper wear. Also, from the 

Figure 7. Typical controlling variable signal 
behaviour during experiments 
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middle graph, the output of the cooling coil valve gets 
a constant value over 50% which could be interpreted 
as the valve gets stuck for opening signal values higher 
than 50%. These points will be further explored in 
future works. 

Model coupling and validation 

The resulting calibrated models of each component, 
from steps 2 and 4, were coupled using the 
Python/Modelica interface. Then, the whole AHU 
model was assembled using the calibrated/coupled 
models of each component. 
The calibrated AHU was simulated using validation 
data sets. The simulated and measured outlet air 
temperatures for each component corresponding to 
one day of the validation set are presented in Figure 8 
(left hand side). The figure also shows the control 
signals from the BMS (right hand side). 
Two of the most common metrics used to qualify the 
goodness of the calibration processes are the 
coefficient of variation of the root-mean-square error 
(CV-RMSE) and the normalised mean bias error 
(NMBE) (ASHRAE 2002). However, in this research 
work, the variables under study are temperatures in 
Celsius scale. This scale is an interval scale that should 
not be used to calculate those types of errors since it 
requires non-negative values to guarantee an average 
above zero. To avoid this inconvenient, the chosen 
metric was the normalised root-mean-square error 
NRMSE since it is normalised using a positive 
difference. 
Table 3 shows the NRMSE of the output temperature 
for each component. Those errors are calculated after 
assembling all components. 
Results show that the deviation of the output in the 
cooling coil is compensating the error from the mixing 

Figure 9. Hysteresis behaviour. Top: Mixing box, 
damper opening vs opening signal. Middle: Cooling 

coil, water flow rate vs opening signal. Bottom: 
Heating coil, water flow rate vs opening signal. 

Figure 8. Left hand side: output temperature (simulated and measured). Right hand side: control signal. From top to 
bottom: mixing box, cooling coil and heating coil 
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box, especially in day 2. In general, the output 
temperature of the unit (output of the heating coil) 
present a averaged NRMSE lower than 12% which 
can be interpreted as a maximum averaged deviation 
of 1.2°C when the range of the output values is 10°C. 
 
Table 3. NRMSE for the output temperature for each 

component. 

NRMSE 
[%] 

Mixing 
box 

Cooling 
coil 

Heating 
coil 

Day 1 9.49 6.64 9.18 

Day 2 17.73 10.38 12.75 

Day 3 13.36 11.46 12.93 

Day 4 8.11 8.39 13.37 

Day 5 7.58 7.67 10.67 

Mean 11.25 8.91 11.78 

CONCLUSION 
An automated calibration methodology for the three 
most common heat exchangers in an air handling unit 
was presented. A case study using real operation data 
and Modelica based steady-state models was 
discussed showing the potential application of this 
methodology. This methodology can be applied for 
other active components found in a typical air 
handling unit – e.g. a humidifier -, provided the two 
part separation (heat/mass exchanger and mechanical 
control element) can be done. These calibrated models 
are deemed suitable for real-time applications of 
controls and fault detection and diagnosis as well as 
hardware in the loop simulations given the automation 
of the calibration methodology and the overall low 
computational requirements for simulation. 
Using the proposed methodology it is possible to keep 
simulation errors within limits accepted for real 
applications. 
Plots of the resulting hysteresis curve can directly be 
used for fault detection and diagnosis. In particular, 
with a simple look at the curves generated in this work, 
the presence of a stuck or mechanical wear could be 
detected. The same observation can be done for other 
typical faults (e.g. passing valves). This detection 
could be automated by using a simple classifier, for 
example a semi-supervised learning algorithm. In 
addition, if the proposed calibration process was 
implemented in real-time (with periodic retraining), 
the tool could be used as a supporting FDD system. 

FUTURE WORK 
Next step in this research is to include the possibility 
of making an initial fault detection and diagnosis using 
the information obtained from the calibration. 
In addition, a graphical user interface will be 
developed in order to integrate Modelica and Python 
code and provide an easy-to-use tool. 

NOMENCLATURE 

Models 

eff 
Q 
c 
C 
n 

effectiveness 
heat transfer 
specific heat capacity 
capacity flow 
saturation efficiency 

[1] 
[W] 
[J/kgK] 
[W/K] 
[1] 

mflow mass flow rate [kg/s] 
T 
Twb 

temperature 
wet bulb temperature 

[°C] 
[°C] 

W 
Wsat 

humidity ratio 
humidity ratio at saturation 

[1] 
[1] 

Optimal control signal 

µ 
U 
U* 
Y 
R 
O 
Ɛ 

Preisach model coefficients 
optimal value 
optimal control signal 
output of the plant (simulated output) 
reference (measured output) 
control signal from BMS 
error tolerance 

Subscripts 

a air 
I input 
O output 
w water 
s steam 
MB mixing box 
CC cooling coil 
HC heating coil 

Functions 

max(, ) largest value between arguments 
min(, ) smallest value between arguments 
Rα,β relay hysteron 
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Table 4. Model parameters and physical quantities 

MODEL PARAMETER COOLING 
COIL 

HEATING 
COIL 

Nominal air input temperature [°C] 25.0 6.3 

Nominal air input relative humidity [%] 50.0 - 

Nominal air output temperature [°C] 13.8 18.8 

Nominal air output relative humidity [%] 88.0 - 

Nominal air mass flow rate [m3/s] 1.35 1.35 

Nominal water input temperature [°C] 6.0 82 

Nominal water output temperature [°C] 12.0 71 

Nominal water mass flow rate [kg/s] 0.97 0.47 

PHYSICAL QUANTITY 

Air specific heat capacity [J/(kgK)] 1006 

Water specific heat capacity [J/(kgK)] 4186 

Atmospheric pressure [Pa] 101325 
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