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ABSTRACT 

This work introduces an approach to optimally 

design energy systems based on economic criteria for 

individual residential buildings and districts 

comprising microgrids (MG) and local heating 

networks (LHN). Further, the impact of different 

time series aggregation methods applied to input data 

for the design optimization is analysed.  

The results show that an aggregation based on 7 

typical 3-days periods with an intra-day temporal 

resolution of 1 h achieves in average 94 % shorter 

solving times than 12 typical days with 15 min 

resolution, while the accuracy is kept at ±0.96 % 

based on unaggregated references.  Further, in a use 

case comprising 6 buildings the installation of 

combined heat and power (CHP) and heat pumps 

(HP) in a complementary MG and LHN enable cost 

savings up to 10.3 % compared to conventional heat 

and electricity supply.  

Keywords: Optimal design, time series aggregation, 

typical period, MIP, distributed energy systems 

INTRODUCTION 

The design of distributed energy systems on a 

residential building or district level is a 

computationally complex task. It comprises the 

optimal selection and sizing of components, while 

maintaining optimal operation according to economic 

or ecological criteria. This task can be approached by 

using different mathematical optimization methods. 

Weber and Shah (2011) optimized the design of the 

energy system of a town comprising residential and 

office buildings applying a mixed integer linear 

programming (MIP) approach. Technologies such as 

wind power, CHP, PV, heat pumps and solar thermal 

collectors are considered in a local heating network 

to satisfy heating, domestic hot water, cooling and 

electricity demands. Haikarainen et al. (2013) 

introduced a MIP for optimally positioning CHP 

units and small HPs in a local heating network that 

supplies 25 buildings. Mehleri et al. (2013) 

developed a MIP model that considers a LHN as well 

as a microgrid connecting five residential buildings. 

Electricity and heat demands can be covered by 

boilers, CHP, PV and thermal storages while total 

annual costs are being minimized. Stojiljković et al. 

(2014) introduced a metaheuristic for multi-objective 

optimization problem, where a trigeneration plant is 

designed while minimizing total annual costs and 

primary energy consumption. Evins and Orehounig 

(2014) optimized the components selection and 

sizing of an energy centre as well as the operation by 

introducing a bi-level optimization method. It 

combines a multi-objective genetic algorithm for 

design optimization and mixed integer linear 

programming (MIP) for operational optimization. 

Further, Veeramsetty (2014) used a particle swarm 

optimization (PSO) technique for the optimal 

location and sizing of distributed generation in a 

distribution network. 

Based on a previous approach by Harb et al. (2014) 

and Harb et al. (2015), this work presents a MIP 

model that allows PVs, batteries, boilers, CHPs and 

HPs to synergize in a combined LHN and MG. The 

design and operation of a whole neighbourhood’s 

energy system is optimized in subject to the demand 

of heating, domestic hot water and electricity. This 

leads to a large number of variables that can be 

handled by MIP. To reduce solving times, an 

improved time series aggregation method is 

investigated by quantifying relative solving times and 

deviations of the optimal objective values based on 

unaggregated reference optimizations. 

Time Series Aggregation  

The computing effort for solving optimization 

problems by MIP strongly depends on the number of 

time steps considered to represent the operation along 

the observation period. The intra-day temporal 

resolution is one parameter that affects the total 

number of time steps to be calculated.  

Aggregation methods enable representing a certain 

time series by few typical periods that preserve the 

relevant demand characteristics and trends. Mehleri 

et al. (2013) introduced 3 typical days with hourly 

resolution for summer, winter and mid-season. The 

mid-season profile is averaged from April and 

November, the summer profile from July and the 

winter from February.  Zhou et al. (2013) applied an 

approach with 12 typical days, which represent 

average profiles of each month. Domínguez-Muñoz 

et al. (2011) proposed a partitional clustering 

methodology. Based on quantified dissimilarities
1
 all 

days of one year are arranged into groups of similar 

                                                           
1
 The dissimilarity between two days is defined by 

the Minkowski distance. 
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days by minimizing the sum of dissimilarities 

between the chosen typical day and the other days in 

each group. Fazlollahi et al. (2014) further developed 

this methodology in order to optimize the number of 

typical days. They also introduced an asymmetric 

segmentation of the typical periods for a further 

reduction of solving times. In contrast Cardoso et al. 

(2013) used a one-week profile with a temporal 

resolution of 15 min to describe the operation of a 

battery storage system in a MG. 

The typical days methodologies greatly reduce the 

number of time steps considered within the 

optimization. The variations in demands and other 

parameters during one day are taken into account. 

Further, by defining different typical days, seasonal 

variations are considered as well. However, typical-

days aggregations do not allow for considering inter-

days energy shifts. Therefore, variations in demand 

and supply over a few days, which could be 

compensated by storage operation, are neglected. 

However, this effect can be considered by a multi-

days aggregation as proposed by Domínguez-Muñoz 

et al. (2011) and Cardoso et al. (2013).  

 In this work, an alternative approach is investigated 

with the aim to minimize the solving times while 

maintaining high accuracy of the optimal solution. 

The accuracy and relative solving time savings are 

determined based on reference optimizations in 

which all 365 days of one year are simulated with a 

15 min resolution i.e. 35,040 time steps. 

Approach 

We propose an algorithm that allows for aggregating 

the original time series into typical weeks as well as 

other period lengths, e.g. typical 3-days profiles. This 

algorithm is part of the pre-processing of the input 

data for the MIP optimization. The illustration in 

Figure 1 and the following explanations apply to a 

weekly aggregation. This methodology is analogue 

for different period lengths. We assume that the 

original data is a time series of 365 days with an 

intra-day temporal resolution of 15 min. The user 

must set the desired resolution ∆t in minutes, period 

length 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 in days and number of typical 

periods 𝑁𝑔. First, the number of days per year is 

reduced to the largest smaller integer multiple of the 

period length. Since one year consists of 52 weeks 

plus one day, the last day, respectively the last 96 

entries are cut off. Subsequently, an hourly, half-

hourly or quarter-hourly averaging is performed to 

reduce the temporal resolution. The periods (weeks) 

are then allocated to 𝑁𝑔 different groups, from which 

the typical profiles will be derived. In this case, the 

reduced time series is subdivided into 7-days periods. 

For the allocation, the values of each week are 

summed over the whole period, i.e. the weekly sums 

are determined. The range between the smallest and 

the largest weekly sum is divided into 𝑁𝑔 sub-ranges, 

which represent 𝑁𝑔 different groups of aggregated  

 

Figure 1 

Aggregation algorithm illustrated exemplary for a 

period length of 7 days 
 

similar weeks. In this sense, each week is allocated to 

one group according to its weekly sum. The 

information of this allocation is stored in vector 𝑔𝑤 

and used for generating the typical profiles. 

Additionally, the number of weeks in each group is 

determined and provided to the optimization model 

as a parameter 𝑛𝑔. 

In the next step, based on the weekly subdivided (but 

not weekly averaged) data, typical-week profiles are 

generated by averaging over all weeks that are 

aggregated in one group. For instance, the value of 

the first time step of a typical profile results from the 

average over all first time steps of the weeks in this 

particular group. Hence, the typical profile preserves 

the average weekly demand as well as the main 

characteristic of the trends in this group. Finally, a 

compensation for the time steps which have been cut 

off in the first step is performed. For this purpose, the 

generated profiles are scaled by the quotient of the 

annual integral of the synthetic and the one of the 

original data. As a result, the annual integral of the 

aggregated time series 𝑑𝑎𝑡𝑔,ℎ
𝑎𝑔𝑔𝑟

 equals the annual 

integral of the original data, 𝑑𝑎𝑡𝑡𝑦
𝑜𝑟𝑖𝑔

 according to the 

following equation: 

15 

60
h ⋅ ∑ 𝑑𝑎𝑡𝑡𝑦

orig

𝑡𝑦

= ∆𝑡 ∙ ∑ (𝑛𝑔 ∙ ∑ 𝑑𝑎𝑡𝑔,𝑡
aggr.

𝑡

)

𝑔

 (1) 

with ng the number of profiles aggregated in group g, 

and 𝑡𝑦 the time steps based on the whole year. The 

final data are written in a g-by-t matrix and saved 

into an include-file, which is provided to the 

optimization model as well. 

Since the number of weeks in each group must be the 

same for all different time series used in the 
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optimization model, the algorithm is only performed 

for the heat demand profile. For all other time series, 

the allocation gw is kept constant. Preliminary 

investigations have shown that the arrangement gw is 

similar for the 3 different heat demand profiles, 

which is plausible because it is mostly affected by the 

seasonality of the heating demand profiles. 

Therefore, only the typical-data-generation part of 

the aggregation algorithm, which is indicated by grey 

filling in Figure 1, is performed on all other series. 

The reason for choosing the heat demand profile for 

the leading aggregation is the clearer seasonality in 

comparison to the electrical demand profile. 

Numerical Analysis 

In this section, the time series aggregation methods 

are evaluated based on the relative accuracy and time 

saving. For this purpose, the optimization model is 

solved several times with aggregated and 

unaggregated input data. An extensive sensitivity 

analysis confirms an increase of the relative deviation 

with lower intra-day temporal resolution. Due to the 

minimal load constraints during intermittent 

operation the utilized storage capacity is higher at 

lower intra-day temporal resolution. Thus, the capital 

costs for the thermal storage rise and fuel costs 

increase because of higher heat losses at the thermal 

storage. Furthermore, the aggregated demand profiles 

have fewer variations, so that electricity purchase and 

feeding-in occur less often, which leads to a cost-

decreasing effect that is less dependent from the 

temporal resolution. Due to the superposition of both 

effects, choosing a higher temporal resolution does 

not always result in higher accuracy. A simple 

comparison reveals that in average, a weekly 

aggregation achieves shorter solving times and 

higher accuracies compared to daily aggregation. 

The effect of the aggregation period length on the 

accuracy is investigated in a further sensitivity 

analysis. For this matter three different setups are 

optimized for a multi-family house and an apartment 

building. In the first setup only a boiler (BOIL) can 

be selected, in the second a PV system in addition to 

the boiler and the third setup pre-sets the additional 

installation of a battery (BAT) storage system. Each 

setup is optimized once with unaggregated input data 

and 7 times with differently aggregated data. In this 

case the aggregation is done by 7 typical profiles 

(7 groups) with 60 min resolution. The period length 

of those aggregated profiles is varied from 1 to 

7 days. Figure 2 shows the relative deviation of the 

objective function value based on the corresponding 

optimization result with unaggregated data plotted 

against the period length. The trends show a steep 

decrease until a specific point, from where it is 

almost flat. Hence, an extension of the period length 

reduces the relative deviation, but above a specific 

period length further extensions bring no significant 

enhancement of the accuracy. This is plausible,  

 

Figure 2 

Sensitivity analysis about the effect of the period 

length on the accuracy of the optimal solution 
 

because with 1-day aggregation the possibility of 

storing heat over subsequent days is being neglected, 

so 2-daily aggregated time series provide more valid 

input data. However, storing energy over periods 

longer than 3 or 4 days is economically inefficient. 

Therefore, there is no significant difference between 

the deviations at 5 and 7 days period length. 

Consequently, under consideration of the computing 

time, aggregations around period lengths of 3 days 

are expected to be most efficient. The graphs also 

indicate that this specific point depends on the type 

of building, i.e. the characteristic of the heat demand 

profile. Further investigations show that with the 

same input data, the accuracy and especially the 

relative time savings are subject to high fluctuations 

depending on the technology choices and type of 

buildings. Therefore, the final investigation 

comprises several optimizations of 12 different 

setups to determine the average values of the 

accuracy, i.e. absolute value of the relative deviation, 

and the relative solving time. Each setup is optimized 

with unaggregated data as a reference and 17 times 

with differently aggregated time series. In this regard 

all 3 parameters of the aggregation algorithm , i.e. 

period length, number of groups and intra-day 

temporal resolution, are varied in certain ranges, so 

that the number of time steps lies between 500 and 

1000. In Figure 3 the relative solving time is plotted 

against the accuracy of the MIP solution. Both are 

averaged over all 12 setups. However, each point 

represents a different aggregation method.  

The shape of the point cloud represents the trade-off 

correlation between short solving time and high 

accuracy. The markers shape indicates the period 

length; the colour represents the number of groups 

while the size illustrates a different intra-day 

temporal resolution. It stands out that the larger 

markers, which represent a 60 min resolution, are  
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Relative solving time and accuracy of aggregation 

methods averaged over 12 different model setups 
 

mostly located on the left-bottom edge of the point 

cloud. This indicates that a lower temporal resolution 

at 60 min leads, as expected, to a more efficient 

solving process than higher resolutions The results 

further reveal that multiple day aggregation enables a 

more accurate optimization result than the 

conventional typical day aggregation and has the 

potential to offer a more efficient solution with 

respect to both accuracy and time saving. Still, a high 

uncertainty regarding the solving time has to be 

considered in terms of optimizing different setups. 

The typical 3-days aggregation with 7 groups and 1 h 

resolution is identified as the optimal aggregation 

setup. The latter allows for reducing the computing 

time by 94 % compared to typical-day aggregation 

with 15 min resolution, where each month is 

represented by one averaged profile, while retaining 

a minimal accuracy deviation of ±0.96 % based on an 

unaggregated reference. The total computing time 

reduction based on unaggregated references reaches 

99.6 % in average. The most accurate aggregation 

considered in this investigation that corresponds to 3 

days with 10 groups and 15 minutes results in an 

average deviation of ±0.83 % and total time saving of 

99.2 % based on references. In comparison, the 

advanced method presented by Fazlollahi et al. 

(2014) achieves a relative deviation of 0.7 % and 

97.5 % time saving based on unaggregated reference. 

OPTIMIZATION MODEL 

The MIP model extends the approach from our 

previous work to optimize the energy systems of 

several buildings within a residential district. The 

objective function formulated as the total annual 

costs, is minimized subject to a set of economic and 

technical constraints. The extensions comprise the 

introduction of a local heating network (LHN) and 

microgrid (MG) connections. The electrical demand 

profiles are generated based on the model provided 

by Richardson et al. (2010), which considers a 

combination of patterns of active occupancy in 

domestic buildings. The heat demand profile 

comprises space heating and domestic hot water 

demand. The first is based on a 2-capacities building 

model. The hot water profile is determined using the 

model by Jordan and Vajen (2003). The annual 

demands are given in Table 2 in the Appendix. 

Economic Constraints 

The capital costs are considered by the annualization 

of the investments for all installed technologies. The 

investments for energy conversion units and LHN are 

calculated based on assumed capacity specific or 

length specific investments respectively (compare 

Table 3). For a MG, an investment for a central 

control unit is assumed proportional to the number of 

buildings. While each LHN connection is optional, 

the decision for a MG is set collectively. Demand 

related costs consider expenses for gas and electricity 

purchase from the public grid. Furthermore, service 

costs and other costs are considered (compare Table 

3and Table 4). The revenues generated by CHP units 

comprise sales related and production related shares 

(CHP-index and CHP Subsidy in Table 4).  Additional 

costs for the EEG apportionment, which is charged 

for self-consumed CHP power according to BMWi 

(2014) are included. An exclusion from those charges 

is possible for at most 10 MWhel during 20 years 

(after installation) if the installed CHP capacity is at 

most 10 kWel, which is implemented by additional 

constraints. 

Technical Constraints 

The technical constraints comprise physical 

correlations and boundaries of the considered 

technologies according to our former work. 

Microgrid 

The establishment of a MG is symbolized by a 

collective decision parameter to maintain linearity 

and reduce the complexity of the optimization model. 

Mathematically the implementation of the MG is 

represented by a summation within the electricity 

balance over all buildings. The electricity balance for 

each building is illustrated in Figure 4. Besides the 

main electricity balance (EB), a secondary balance 

for HP and EH is defined, which is fed by electricity 

bought at HP tariff 𝐸̇𝑖
buy,HP

 and self-produced 

electricity 𝐸̇𝑖
self,HP

. This allows for PV and CHP  
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Figure 4 

Electricity balance 
 

power to be consumed by the HP & EH, while the 

power from the HP tariff circuit is exclusively 

consumed by the HP and the EL. 

Local Heating Network 

The model of the LHN is based on a simplified 

approach considering building-to-building 

connections and energy flow rates interactions. Due 

to relatively short distances between the 

neighbouring buildings, thermal losses are neglected. 

Our former work considered pressure losses due to 

friction in pipes, built-in components and heat 

exchangers within the buildings. The results revealed 

that the electricity costs for pumping amount to 

0.15 % of the total annual costs. Consequently, in 

this model friction losses are neglected and the pipe 

diameter options are reduced to one for minimizing 

the computational effort. Further, the LHN is 

designed as unidirectional network, i.e. energy can 

only flow in one direction. Since HPs operate less 

efficient on high feed temperature, only CHP and 

boilers are considered to supply the LHN. Therefore, 

the heat productions of CHP and boiler are split up 

into fractions for own usage and for the LHN as 

illustrated in Figure 5. Additionally, a design heat 

load balance for each building is implemented, where 

an exchange via LHN is allowed but not with thermal 

storages. 

SIMULATION RESULTS 

In the following sections different setups 

representing certain combinations of technologies are 

investigated with subject to cost optimal design. For 

this matter, presets (additional constraints) are 

implemented that prohibit the selection of 

technologies that should not be considered in the 

certain case. For instance "BOIL+PV" represents a 

preset in which besides a conventional boiler and 

thermal storage also PV can be selected. The other 

technologies are prohibited by setting their binary 

decision variables to zero. For comparison with 

alternative setups a reference setup is optimized for 

each building. For this purpose the preset "BOIL-

only" is chosen. It states that a conventional boiler is 

the only possible heat source. A thermal storage is 

still optional whereas a battery storage system is 

excluded from this setup. The optimality criterion is 

set at 0.1 %. It turns out that the boiler capacities for 

building (AB) fit to the corresponding design heat  

 

Figure 5 

Heat balance 
 

loads. In case of the single-family house (SFH) the 

smallest considered boiler capacity is selected. A 

thermal storage with small capacity is installed in 

each building. 

Heat Pump and CHP 

Investigations of single-building configurations show 

that HP operation is economically not efficient 

enough to compete with a condensing gas boiler. In 

contrast, CHP units achieve significant cost savings 

in MFH and AB, because the major share of 

electricity demand is covered by self-produced power 

at relatively low levelized electricity cost (LEC). 

The implementation of a MG allows for heat pumps 

to run on electricity generated by local CHP unit in 

another building. Furthermore, connections via a 

LHN enable higher work load for CHP units and/or 

the installation of larger units, which leads to lower 

specific energy costs. Previous investigations for a 

neighbourhood with 2 SFHs, 2 MFHs and 2 ABs 

show that by introducing a MG the costs for a setup 

with boiler, CHP and HP can be reduced by 0.7 %. 

Instead the introduction of a LHN achieves 4.6 % 

cost reduction. The combination of both is more 

efficient and is investigated in this work.  

Aligning with our previous work a district in the 

German city Bottrop with 2 SFHs, 3 MFHs and 1 AB 

is considered for the following investigations 

(compare Figure 6). With the simulation of MG and 

LHN the computational effort increases rapidly. 

Consequently, additional preset constraints are 

implemented in the optimization model to reduce the 

solution space. PV and battery storage systems are 

excluded. Additionally, unfeasible LHN connections 

are forbidden. These are: 3↔6, 3↔5, 4↔6, 2↔6, 

1↔5, 1↔6 and 2↔3. The total number of 

connections is limited to 5. Furthermore, CHPs are 

not allowed in the SFHs, since it is more efficient to 

place them in buildings with higher heat demand. 

The installation of any CHP unit is enforced in the 

AB. Additionally, based on simulation results of less 

complex systems a start solution is provided to the 

solver to reduce the solving time. It comprises a 15 

kWel CHP unit in building 1, a 4.7 kWth HP in 

building 3 and 8.4 kWth HPs in building 5 and 6. 

According to the resulting optimal layout in Table 1 

one 15 kW CHP unit in the AB provides the whole 

district with thermal energy via a LHN. Boilers in the  
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Figure 6 

Optimal LHN layout with a MG 
 

SFHs and HPs with EHs in the MFHs provide 

additional power during high heat demand periods. 

Since the buildings 2, 5 and 6 comprise electrical 

devices, only 3 buildings require gas grid 

connections. As a result, the total annual costs 

amount to 43,189 €/a, which implies 10.3 % cost 

savings based on the reference setup. The carbon 

dioxide emissions are reduced by 33.6 %. Without 

any connections the cost saving are limited to 1.3 %.  

Besides these results, the limitations of this 

methodology need to be considered. Due to long 

solving time the optimization of the 6- buildings 

configuration with MG and LHN is performed until a 

relative optimality gap of 3.7 % is reached, i.e. the 

annual costs of the presented solution are at most 

3.7 % higher than those of the global optimum. For 

instance, moving the boiler from building 3 to 

building 1 as a peak boiler saves 233 €/a due to lower 

investment and one gas grid connection less, which 

complies with 0.85 % of the total costs. Since this 

lies within the gap, this improvement is not 

considered in the presented solution. Alternatively, 

merging the two 9 kW boilers into one 18 kW unit 

can save 1.1 % of the total annual costs, but this also 

increases the minimal load of the system. In turn, 

more frequent intermittent operation affects higher 

storage utilization. Furthermore, the analysis of the 

simulation data reveals a slight oversizing of the 

electrical heating elements (ELH) by 1.7 kW. An 

adjustment reduces the total annual costs by only can 

be recognized between the capacity ratios 2 and 4. 

Furthermore, the results of the setups with MG and 

3 €/a, which is why this oversizing is tolerated in 

regard to the optimality gap. The high economic 

efficiency of this setup is due to the large CHP unit 

installed capacity and its synergy with the HPs. As a 

result low demand related costs are achieved. 90.1 % 

of HP and EH consumption is covered by the CHP 

unit, which is 31.2 % of the whole CHP electricity 

production. The CHP unit reaches 4104 full load 

hours per year.  

A further investigation analyses combinations of 

different buildings and whether a certain ratio 

between HP and CHP capacities can be identified as 

cost-optimal. In this regard, several combinations of 

the 3 different types of building are optimized, to 

examine the cost optimal CHP-HP capacity ratios. To 

maintain manageable solving time, configurations 

with 2 to 6 buildings are considered. For a 

comparison between the different configurations 

combined levelized electricity and heat cost (LEHC) 

is introduced. It is determined from the total annual 

costs divided by the total annual electricity and 

scaled heat demand, as presented in equation (2). By 

scaling the annual heat demand, it is considered that 

heat has a lower economic value compared to 

electricity. Therefore the scaling factor 𝑓Q/E is 

calculated from the quotient of the specific demand 

related heat costs and the specific electricity costs 

based on the reference setup (BOIL-only). The 

LEHC is calculated for each optimal solution of the 

considered building configurations and plotted 

against the CHP-HP capacity ratio, which complies 

with the quotient of total CHP and HP electrical 

capacity. 

𝐿𝐸𝐻𝐶 =
𝑐t

∑ ∑ [𝑛𝑔 ∙ ∑ (𝐸̇𝑖,𝑔,𝑡
dem + 𝑄̇𝑖,𝑔,𝑡

dem ∙ 𝑓Q/E)∆𝑡𝑡 ]𝑔𝑖

 (2) 

Figure 7 shows that without LHN the optimal designs 

comprise a wide range of capacity ratios between 1 

and 8. Additionally, the size of the markers indicates 

the total sum of CHP and HP (electrical) capacities in 

a certain configuration, to consider the economics of 

 

Table 1 

Optimization results for the considered district with / without connections (rel. gap 3.7 %) 
  

Position i 1 2 3 4 5 6 

Type of building AB MFH SFH SFH MFH MFH 

cap
i
STO in m3 0.97 / 1.04 1.10 / 0.17 0.27 / 0.06 0.33 / 0.07 1.10 / 0.19 1.10 / 0.17 

𝑐𝑎𝑝𝑖
BOIL in kWth - / 24.5 - / 25.7 9 / 9 9 / 9 - / 25.7 - / 25.7 

𝑐𝑎𝑝𝑖
CHP,inst

 in kWel 15 / 3 - / - - / - - / - - / - - /-  

𝑐𝑎𝑝𝑖
HP,inst

 in kWth - / - 11.4 / -  - / - - / - 11.4 / - 4.7 / - 

𝑐𝑎𝑝𝑖
ELH in kWth - / - 17.4 / - - / - - / - 17.4 / - 16.5 / - 

 

3 SFH
4 SFH

5 MFH

6 MFH

2 MFH

1 AB
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Figure 7 

Levelized electricity and heat costs at different CHP-

HP capacity ratios 

 

scales. With this in mind the tendency of a minimum 

LHN, which are represented by the crosses, show 

that those CHP-HP capacity ratios mostly take values 

around 3.5. This is plausible, because with the 

additional options for LHN pipelines, the model 

provides more flexibility for the design optimization. 

Therefore, energy systems with LHN options are 

designed closer to the optimal capacity ratio. 

CONCLUSION 

This work presents a MIP approach for the cost 

optimal design of energy conversion units in a 

domestic district.  

Further, different time series aggregation methods are 

investigated to reduce the computational time. The 

results reveal that a multi-day aggregation enables 

shorter solving at times while conserving the 

accuracy, due to the consideration of inter-day 

energy shifting. As an appropriate trade-off between 

solving time and accuracy, an aggregation by 7 

typical 3-days profiles with 1 h intra-day temporal 

resolution is chosen for the MIP investigations in this 

work. This setup reduces the solving time by further 

94 % compared to a typical days aggregation method 

based on monthly average profiles, i.e. 99.6 % based 

on unaggregated reference. The accuracy averages at 

±0.96 %.  

In terms of CHP and HP installation, optimizations 

for several configurations reveal significant 

enhancement of the economic efficiency of 

distributed energy systems by introducing a MG and 

LHN. The optimal design of an exemplary district 

comprises one large CHP unit supplemented by HPs, 

electrical heater and boilers to cover base and peak 

demands. Due to the MG, the HPs and electrical 

heaters operate on low cost electricity from the CHP 

unit. As a result the total annual costs are 10.3 % 

lower than in the reference setup. Also, carbon 

dioxide emissions are reduced by 33.6 %. A thorough 

sensitivity analysis show that for larger districts a 

ratio between the total installed CHP capacity and 

HP capacity around 3.5 is can be expected to achieve 

the highest economic efficiency. 
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APPENDIX 

Table 2 

Energy demands (Verein Deutscher Ingenieure 

(2006), BDEW (2010)) 
 

type Heat. Hot w. Elec. DHL Pers. 

in kWh/a kW - 

SFH 13,029 1,271 3,168 6.5 2 

MFH 44,020 5,086 9,410 25.7 8 

AB 46,845 14,621 25,590 33.5 23 

Table 3 

Cost parameters (Harb et al. (2014), Mehleri et al. 

(2013), Spieker and Tsatsaronis (2011), LOGSTOR 

Deutschland GmbH (2014)) 
 

tech Fixed inv. 

(excl. VAT) 

Variable inv.       

(excl. VAT) 

Service 

costs 

STO 500 € 1450 €/m³ - 

BOIL 3100; 600 € 62 €/kW 3 %/a 

CHP - 
7750; 5895; 4381; 

3214; 2777; 2442 

€/kWel 

8 %/a 

HP 4744.6 € 562.28 €/kWth 2.5 %/a 

ELH 245 € 19 €/kW - 

LHN  (40+100) €/m 4.4 %/a 

MG  300 €/building  

 

Table 4 

Tariffs and subsidies (ELE GmbH (2014b), ELE 

GmbH (2014a), ELE GmbH (2014c), EEX AG 

(2014), Bundesministeriums der Justiz und für 

Verbraucherschutz (2002), Bundesnetzagentur 

(2014a), Verbraucherzentrale NRW (2014), 

Bundesnetzagentur (2014b)) 
 

 Work price Base price 

Electricity 27 ct/kWh
el
 101.76 €/a 

HP Elec. 23.94; 20.19 ct/kWh
el
 65.45 €/a 

Gas for Boiler 7.84 ct/kWh
LHV

 
121.44 €/a 

Gas for CHP 7.23 ct/kWh
LHV

 

CHP-index  5.13; 4.16; 4.78; 4.65 

ct/kWh
el
 - 

CHP Subsidy 5.41 ct/kWh
el
 - 

EEG for CHP 0.3827 · 6.24 ct/kWh
el
 - 

Refund
avoid-grid

 0.9 ct/kWh
el
 - 

PV Feed-in 12.75 ct/kWh
el
 - 

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7 8 9

L
E

H
C

in
 €

/k
W

CHP-HP capacity ratio

with MG

with MG + LHN

38 kWel

24 kWel

12 kWel
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Table 5  

Capacity choices (Spieker and Tsatsaronis (2011), 

proKlima (2014), Brötje GmbH (2014), Bosch 

Thermotechnik GmbH (13/10/14), Enertech GmbH 

(2014), Viessmann Werke GmbH & Co. KG (2014)) 
 

tech Available capacities Min. load 

STO 0.06 - 2 m³ - 

BOIL 9 - 40 kW 25 % 

CHP 2; 3; 5; 10; 15; 20 kWel 50 % 

HP 
4.7; 6.2; 8.4; 11.4; 17.2; 24 

kWth 

40 % 

ELH 0 - 30 kW - 

PV 1.5 - 50 m²[19] - 

BAT 5; 8.1; 9.2; 20.5 kWh - 
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