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ABSTRACT 
  A new methology using agent-based modeling for 
human behavior simulation is presented. This 
approach aims to address the limitations and/or 
challenges of dealing with behavioral components in 
existing building simulation programs. Also, it tries 
to improve behavior decision process by mimicking 
actual occupants in buildings. In a simulation 
experiment, a window use behavior was tested with 
agent-based modeling and demonstrated its ability to 
account for dynamic changes of the behavior, in real-
time, and the behavior impact on both the 
microclimate and energy uses in a space.  

INTRODUCTION 
  Human behavior in buildings has commonly been 
cited as the favorable attribute that explains the gap 
between the simulated and actual energy 
consumption data. Nevertheless, due to the 
uncertainties in behaviors, most current simulation 
research neglects to fully account for realistic 
occupant behaviors (Zimmermann, 2006).  
  The objective of this paper is to uncover limitations 
in current practices for human behavior simulations, 
and to introduce agent-based modeling as a new 
methodology to address the limitations, so that real-
life behaviors can be modeled.  
  In a previous paper, authors have outlined the 
challenges of behavior simulation in buildings and 
explained how manipulating the simulation schedules 
(occupancy, lighting, equipment, and HVAC) can 
control the load changes due to occupant behavior 
(Lee et al., 2011). In addition, our ongoing efforts to 
address the behavior simulation in research identify 
the following limitations: First, a clear causality 
between behaviors and environmental stimulus is not 
fully defined and/or reflected in simulation programs. 
Typically, occupant behaviors such as window use or 
electric light use are either ON during operating 
hours, and OFF otherwise, without being responsive 
to the dynamic changes of the stimuli. Second, a 
single behavior decision is made for the entire space 
(or zone) based on an averaged environmental 
stimulus (e.g., temperature). For example, ASHRAE 
Adaptive Comfort Model prescribes the upper and 
lower temperature limits for the use of operable 
windows in a naturally ventilated space. The 

simulation takes the zone temperature average to 
determine one window use behavior for the entire 
zone. The limitations hardly allow us to apply 
realistic behaviors of an actual building, hence, they 
open up opportunities for increased accuracy in 
simulation results.  
  To mitigate the shortcomings of current behavior 
simulation, an agent-based modeling approach is 
presented in the paper. Agent-based modeling is 
defined as ‘modeling agents – or building occupants 
– individually to account for effects of the diversity 
among agents in their behaviors, in the pursuit of 
understanding the whole system’ (Macal et al., 
2010). The strength of agent-based modeling, 
particularly in human behavior research, is 
summarized below: 
• All behavioral aspects of agents can be modeled 

(Azar et al., 2010). 
• Allow for different agents to communicate with 

each other for joint-decision making in a given 
environment (Luck et al., 2003). 

• Addresses the uncertainties of the real world by 
using techniques from statistics, computer 
science, etc. (Ramos et al, 2008).  

  In the following section, a simple simulation 
experiment is presented to highlight the potentials of 
agent-based modeling, and it discusses how agent-
based modeling can be integrated into an existing 
building simulation program.  

METHODOLOGY 
  Agent-based modeling is normally a simulation 
tool, programming language, or prediction models 
used for simulating agent behaviors and agent 
interactions, which is consisted of three core 
elements: (1) a set of agents, their attributes, and 
behaviors, (2) a set of agent relationship and methods 
of interaction, and (3) agents’ environment (Macal et 
al., 2010; Luck et al., 2003). The scope and 
complexity of agent-based modeling depends on the 
specifics of the above three elements. Nevertheless, 
even the simplest agent-based modeling, which 
consists of agents and their relationship, could unveil 
valuable findings about the system as a whole 
(Bonabeau, 2002).  
  Agent-based modeling presented in the paper is 
programmed in Matlab, with a goal of mimicking a  
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mimic building occupants by understanding the given 
environment (spatial and thermal), thinking about 
various behavior decisions in response to the 
environment, and executing behaviors. In order to 
make decisions, an agent is programmed to prioritize 
the level of its thermal comfort, and hence, consider 
thermal parameters (e.g., temperature, humidity, air 
speed, etc.) as the main stimulus for behaviors.  
  Figure 1 illustrates how the use of agent-based 
modeling (hereinafter ABM) distinguishes itself from 
the existing method for simulating occupant 
behavior. The diagram compares the window use 
behavior in a naturally ventilated space. In an 
existing simulation program (first diagram from the 
left in Figure 1), such as EnergyPlus, a fixed 
occupancy schedule, or “Human Occupancy,” is 
what dictates the schedule for the window use 
behavior, or “Ventilation Schedule.” In addition, a 
“Predefined Behavior Input,” such as equipment use, 
lighting use, ventilation control mode (elaborated in 
the EXPERIMENT section), and others that are 
indicative of various occupant behaviors, is decided 
and used throughout the entire simulation cycle.  
  On the other hand, the proposed method (middle 
diagram in Figure 1) uses the ABM to make 
decisions solely on the comfort level of an agent. 
After an agent makes a decision whether to 
open/close the window, the ABM sends the 
information to EnergyPlus to calculate the immediate 
changes in the thermal condition of the space and the 
energy implications. The communication is through 
an onion simulation coupling (using MLE Legacy and 
BCVTB) so that the ABM and EnergyPlus can 
exchange information in real-time (Nghiem, 2012; 
Wetter, 2011). The information consists of the 
thermal parameters that determine the comfort level 
of the agent, behavior decisions of the agent, and the 
behavior implications on thermal conditions and 
energy uses (exchanged at each simulation timestep).  
   
 

 

 
 
 

 
  The “Make Behavior Decisions” process is 
illustrated in Figure 1 (far right diagram), which 
basically covers the logic of the ABM and how the 
agent makes behavior decisions. The detailed 
background and theoretical framework related to the 
process are not covered in the paper, while a brief 
summary is as follows: 
1. Perceive, Think, and Act 

• Observe: At each timestep, an agent observes 
the thermal parameters in the space to 
determine the level of comfort. 

• Orient: An agent calculates a cost function to 
identify and rank different behavior options 
that would maintain comfort or mitigate 
discomfort in the space. 

•  Decide: Based on the thermal comfort model, 
an agent decides on the behaviors to consider 
and the magnitude of the behaviors, e.g., wear 
a light sweater or turn on a personal fan. This 
is elaborated in the next section.  

• Act: An agent notifies the execution of 
behaviors to all the ABM components to 
initiate the learning/training and agent 
interaction process. In addition, simulation 
coupling is conducted so as to calculate the 
changes in thermal conditions and energy 
uses. 

2. Learning/Training 
• Memory: An agent keeps track of the 

behaviors executed and their effectiveness in 
achieving the comfort level.  

• An agent cost function can be constructed to 
maximize its goal to either increase/maintain 
‘comfort’ or achieve ‘energy savings.’ 

• Update cost function weights: The weight 
coefficients associated with the cost function 
are updated based on the effectiveness of the 
behaviors toward comfort (not covered in the 
paper).  

 
 

Figure 1 Comparison between existing and proposed simulation process 
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3. Agent interaction 
• Effects of others: An agent observes how its 

behavior affects others, and vice versa, by 
comparing behaviors of others with its own 
cost function and comfort level.  

• The cost function is consisted of a normative 
belief of an agent that accounts for these 
effects of others. The normative belief changes 
as a result of this agent interaction, but also 
defined by managerial arrangements that 
constrict certain agent behaviors. 

• Update cost function weights: The weight 
coefficients associated with the normative 
belief in the cost function are updated based 
on the effectiveness of the behaviors toward 
comfort (not covered in the paper). 

  Overall, the assumed advantages of ABM are the 
following: 
• Instead of using zone-averaged thermal 

parameters, the ABM tries to use those that 
directly affect an agent in real-time. 

• Therefore, multiple agents can incur varied 
behavior decisions in a zone, and truly realize 
the ABM mindset – describing a system from the 
perspective of its constituent units (Bonabeau, 
2002). 

• Ultimately, the ABM allows a simulation 
process to closely emulate the real world, 
helping to increase simulation accuracy by 
increasing the prediction accuracy of internal 
heat gains that result of occupant behaviors. 

SIMULATION EXPERIMENT 
  The experiment simulates the window use behavior 
in a naturally ventilated space in EnergyPlus, coupled 
with the ABM approach. In a naturally ventilated 
space, the thermal conditions of the space are 
regulated primarily by occupants through opening 
and closing the windows (ASHRAE, 2004). 
Therefore, the experiment only considers the zone 
mean air temperature as the stimulus for determining 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the window use behavior. However, a more 
comprehensive ABM will calculate the Predicted 
Mean Vote (PMV) for thermal comfort to capture the 
effects of multiple behaviors. 
  The experiment is not only to test the new ABM 
methodology, but also to quantify the impact of 
occupant behavior on building performance. Also, it 
compares how the results from the default 
EnergyPlus simulation differ from those that utilize 
the presented ABM. Figure 2 is a diagram of the 
simulation process that is part of EnergyPlus. The 
different ‘Control Mode’ (also in Figure 1) implies 
how behavior decisions on window use are calculated 
in EnergyPlus (DOE, 2011). The ones that are tested 
in the paper are as follows: 
• Constant: All of the zone’s operable windows 

and doors are open, independent of indoor or 
outdoor conditions.  

• Temperature Driven: All of the zone’s operable 
windows and doors are opened if Tzone > Tout and 
Tzone > Tset. 

• Adaptive thermal comfort: All of the zone’s 
operable windows and doors are opened if the 
operative temperature is greater than the comfort 
temperature (central line) calculated from the 
ASHRAE Standard 55-2010 adaptive comfort 
model. 

Simulation Settings 
  Figure 3 illustrates the space used to simulate 
window use behavior in the experiment. The 
simulation settings are as follows: 
• Simulators: EnergyPlus version 7.01 and Matlab 
• Weather: Philadelphia, PA, USA 
• Gross floor area: 669.3 m2 (Single zone) 
• Program: Generic office area 
• Window to Wall: 30% (5 windows at North and 

South façade) 
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Figure 2 Window use behavior simulation process in EnergyPlus 
 



 
Figure 3 Simulation space 

 
  
• Hours simulated: 8760 hours 
• Number of agents: a single agent 
• Mechanical: Fan-coil unit 
• Ventilation: Mixed-mode ventilation 

  Figure 4 explains how the ABM is coupled with 
EnergyPlus, which can be compared with the process 
shown in Figure 2. Instead of the embedded control 
mode provided by EnergyPlus, the ABM conducts an 
onion coupling, i.e., at each timestep it will perceive 
the level of occupant comfort satisfaction and 
determine whether to open/close the window. First, 
an agent perceives the environment as it observes the 
zone air temperature that is related to the space, 
which is information transferred from EnergyPlus to 
ABM. If an agent is comfortable (based on adaptive 
thermal comfort), there is no window use behavior, 
but otherwise, an agent will think about its options to 
respond to the comfort dissatisfaction – or ‘Calculate 
Cost.’ In this case, only a single agent and a single 
window use behavior are considered, hence, the cost 
primarily calculates the sum of an agent’s belief on 
the effectiveness of window use for comfort and the 
ability to actually control the windows (Fishbein et 
al, 2010), without consideration for agent interactions.  
If the cost exceeds a certain criteria, behavior is executed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   ‘S1’ and ‘S2’ in Figure 4 refer to the two states of 
the behavior, closed and opened, respectively. The 
four arrows between the two states refer to the four 
transitions: closed to open, opened to close, remain 
opened, or remains closed. This information is 
exchanged from the ABM to EnergyPlus to not only 
calculate the behavior impact on energy use, but also 
the microclimate of the space that would affect 
decision-making process at the next timestep (‘Time 
t+1’).  
  The simulated space is conditioned with a fan coil 
unit, with mixed-mode ventilation (alternate) allowed 
during the simulation period. 

RESULTS AND DISCUSSION 
  Figure 5-(a) is a graph showing temperature trends 
populated by the ABM, from January to March (first 
1200 hours) of the site. It compares the zone mean air 
temperatures dictated by three control modes for 
window use behavior: Reference case with no 
window use behavior (existing EnergyPlus default 
settings), temperature-based control mode (using an 
existing EnergyPlus algorithm), and adaptive comfort 
control mode. One of the most noticeable 
observations is that allowing control to adjust the 
windows resulted in decreased diurnal temperature 
swings. This is consistent throughout rest of the 
colder months (Nov-Dec). Even between the two 
control modes for window uses (temperature and 
comfort), comfort-based adaptive comfort control 
mode seems to have smaller temperature fluctuations. 
  As for the hotter months from July to September, as 
in Figure 5-(b), all the temperature trends seem to 
parallel each other. The average zone air 
temperatures for the reference case, temperature-
based control mode, and adaptive comfort control 
mode are 24.4°C, 24.3°C, and 25.9°C. This indicates 
that comfort-based behavior decisions result in larger 
zone air temperature, and ultimately incur higher 
internal heat gain in the space. 
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Figure 4 Window use behavior simulation process in ABM 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  The results may imply that having some control 
over building systems to manipulate the built 
environment may increase the tolerance for operative 
temperature, which resembles the adaptive model for 
thermal comfort (de Dear et al., 1998).  

  In terms of the annual heating and cooling demand, 
allowing the window use behavior resulted in higher 
overall demands. As shown in Figure 6, the 
temperature-based control for window use resulted in 
the highest annual heating (35.4kW/m2), and the 
adaptive comfort mode in annual cooling demand 
(46.4kW/m2).  

  The two results make it clear that even accounting  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for a single behavior could result in dissimilar 
simulation results compared to the reference mode.   

  The experiment also compared the window use 
behavior in the two simulation platforms. Given the 
same simulation settings, a window use behavior 
based on temperature-based control mode was 
simulated in the default EnergyPlus model and the 
ABM coupled EnergyPlus model. Figure 7 is the sum 
of total temperature difference in the zone mean air 
temperature between the two cases. The results 
illustrate how the ABM approach creates different 
thermal conditions in the space from a non-ABM 
approach, despite using the same calculation algorithm. 
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March, (b) July to September 
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This is more evident during the hotter months of the 
year Ð up to almost 12¡C hourly. 

CONCLUSION 
  In response to the limitations of current simulation 
practices that oversimplify human behaviors, the 
paper has presented a new simulation methodology 
that couples existing energy simulation program with 
agent-based modeling.  

  The biggest advantages of agent-based modeling 
(ABM) is that it closely mimics the behavior of an 
actual occupant, i.e., from an occupant perspective, 
rather than relying on external forces such as 
occupancy schedule, which are not always 
representative of the entire occupant population. 

  The experiment using ABM was compared to the 
existing simulation process, investigating window 
use behavior in a naturally ventilated space. ABM 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was able to capture the behavioral impact on energy 
consumption, and also dynamically update the 
thermal conditions of a space. That is, while the 
existing simulation program was only concerned with 
a behavior-energy causality, the ABM was sensitive 
to the subtle effects of the behavior on occupantsÕ 
thermal conditions in real-time, which implies that 
behavior events are not entirely dependent on the 
environmental stimuli, but also on other behaviors. 

  The energy results were not as intuitive as we had 
initially expected Ð the increase of window use 
behavior (for natural ventilation) should have 
lowered the overall energy consumption due to the 
lesser use of mechanically conditioned air. Our 
results indicate that adaptive comfort control mode 
for window use behavior yields the highest end use 
energy demand, which we can conclude with the 
following possibilities:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 Zone mean air temperature differences (monthly sum) as a result of window use behavior based on 

temperature-based control mode, between existing and ABM simulation results 
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Figure 6 Annual heat and cooling demands for different window use behavior control modes 
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¥ Maintaining the level of comfort in a space 
incurs other emerging energy demand, e.g., a 
ventilation heat loss due to opening the 
windows. 

¥ The logic used in the ABM was not robust 
enough to fully account for the expected energy 
savings. 

¥ Overall increased zone air temperature, for the 
comfort-based ventilation control, was 
compensated by other mechanical entities to 
meet the HVAC setpoints. 

  Our next step is to incorporate other behaviors into 
the picture Ð such as lighting use, thermostat 
adjustment, personal cooling/heating equipment, 
adjusting clothing level, etc. By optimizing the ABM 
logic and validating the model with actual data, we 
expect to have a holistic understanding of occupant 
behaviors in buildings, and ultimately, use the 
knowledge to increase the prediction accuracy of 
building simulation programs. 
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AUTHOR RESPONSE TO REVIEWER COMMENTS 
 
Comments from Reviewer #1 : 
1. Comparison of mean radiant temperature with mean air temperature between the different 
simulations should not be done. Mean radiant should be compared with mean radiant and dry bulb air 
temperature should be compared against dry bulb. 
 
!  Fixed. This was a simple typo overlooked from transferring graphs to the paper.   
 
2. How does the ABM relate to external temperature (agents should be satisfied with higher indoor 
temperatures in summer and lower temperatures in winter, this is a characteristic occupant response)? 
 
!  As mentioned in the INSTRUCTION section, determining comfort/discomfort was based on 
Adaptive Thermal Comfort Model (ASHRAE) as this paper (mostly the simulation experiment) only 
dealt with the window use behavior in a naturally ventilated space. In our more developed agent-
based modeling, we calculate the PMV for thermal comfort to account for multiple behaviors and their 
relationship to other thermal properties.  
 
3. How is y-axis scale of fig 7 obtained? 
 
!  Fixed. It should have been the ÒSum of monthly temperature differences.Ó 
 
4. ABM logic should be presented (even if at a high level). It is not sufficient to just say that an ABM 
has been used. 
 
!  We have added the higher-level ABM logic in Figure 1.  
 
Comments from Reviewer #2 : 
1. Change the names of the three control modes: Benchmark to Reference; temperature based OK, 
ASHRAE to adaptive comfort. 
 
!  DONE. 
 
2. Give illustration of the position of the windows (opened or closed) for a typical day for the 3 modes. 
It is not clear if you run 2*3 simulations or 3: the 3 modes with or without ABM or only the modes with 
ABM. On fig 6, only 3 simulations appear. 
 
!  For the purposes of presenting a simple simulation experiment, we were not concerned with the 
positioning of the window (only OPEN vs. CLOSE for now), but more with comparing how our ABM 
approach yields different simulation results from the existing simulation process. Basically, the three 
simulation modes point to the three different logics associated with accounting for window use 
behavior. Note, that the ÔReferenceÕ case assumes no behavior, so as to highlight that even a single 
behavior can make a difference both in thermal conditions and energy uses of a space. 
 
3. Fig 7 is not understandable: what is the y axis (values of temperature reaching 1800)? Is that a 
cumulative difference for one month? What are the consequences? 
 
!  Fixed. Refer to comment #3 from Reviewer 1. The reasoning for the comparison (consequences) is 
now added in the text.  
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