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The states used for the controller are detailed in 
Table 1. More details about the way the states were 
selected for the final controller are given in the 
controller fine tuning chapter. 
Table 1 States for calculating the control parameters 

State Description 
��ଵݔ Ambient temperature in °C 
��ଶݔ Wind speed in m/s 
��ଷݔ Diffuse solar radiation in W/m  
��ସݔ Beam solar radiation in W/m  
��ହݔ Room air temperature in °C 
��ݔ Presence as Boolean (0 or 1) 

 

For the set temperature in each room, the 
corresponding room air temperature and presence for 
that room are considered. For the CCA (ݑସ) the mean 
room air temperature of all three rooms is used.  
The optimization algorithm is implemented in 
MATLAB.  

Co-Simulation 
The simulation model was build using the modeling 
language Modelica in the simulation environment 
Dymola. For connecting the optimization algorithm 
with the simulation model we used the BCVTB 
(Building Controls Virtual Test Bed) software 
(Wetter and Haves, 2008).  
The optimization algorithm runs iteratively and uses 
a simulation model to calculate the energy demand 
and the comfort level determined by a ߠ matrix. We 
use a simulation period of two days for such a test. 
At the beginning of each iteration a new matrix ߠ is 
generated, the co-simulation runs and at the end of it 
the cost function and constraints are evaluated. 
Afterwards the ߠ matrix is improved by the 
optimization algorithm and tested in a new iteration. 
During the co-simulation the model exchanges data 
with the optimization algorithm every ten minutes 
simulation time. The model sends the building states, 
as well as the current values for the energy 
consumption and the PPD index. Using this data the 
optimization algorithm calculates the new values for 
the control parameters and sends them back to the 
simulation model. The new values for the control 
parameters are set in the simulation and new states 
are generated.  

Models for the building and technical equipment 
A detailed thermal simulation model for the selected 
area is a prerequisite for the building’s optimization 
and control process. The model takes into account 
geometries, building physics, installed HVAC and 
energy generation systems. It has a degree of detail 
that allows a thorough validation, as well as 
acceptable simulation durations. 
The tower model was done using components from 
our Modelica libraries (Müller and Badakhshani, 
2010). Each wall, window and door is individually 
modeled. The air volume in each room is modeled as 

one node. One typical office room with an outer wall 
(Tower NW and Tower NE) has a floor area of 19 m  
with a height of 3 m and a window area of 8 m . The 
Tower Corner has larger rooms with two outer walls 
and a floor area of 32 m . The windows are equipped 
with external blinds, which activate once the incident 
solar radiation exceeds 180 W/m . 
The following internal loads are considered: humans, 
machines and lights as convective and radiant heat 
loads and humans as CO2 sources (VDI 2078, 1996). 
The technical equipment is modeled in detail. The 
model for the CCA is a physical model, with the 
pipes inserted between the concrete layers. The FVU 
can heat, cool and ventilate the rooms. The control 
strategy is modeled exactly as in the actual unit. 
During night time, when the office is not used, the set 
temperatures are adjusted, so that the unit remains in 
standby. For cooling the set temperature is increased 
with 5 K, and for heating it is decreased with the 
same amount. The heater, cooler and ventilator 
models are almost ideal; meaning once they are 
activated the reaction in the room temperature is fast. 
In reality we would have a delay caused by several 
factors: the furniture in the room, the opening of a 
window etc. The simplification of using just one air 
node per room and the goal of achieving short 
simulation durations justifies in this case the 
selection of almost ideal components. 
The verification of the simulation model with 
measurement data is only partially possible. The 
building has several sensors installed in each room 
(presence, window opening, temperature, CO2-
concentration). Weather data is provided by a nearby 
weather station. However we have no information 
about the position of the blinds, the number of people 
who are in the room at one time, or the number and 
type of machines which are in use. For such a well-
insulated building these types of internal gains have a 
considerable effect on the room air and radiant 
temperature. Several rooms are reference rooms, 
where extra measuring equipment was installed to 
measure the energy fluxes in the room (CCA and 
FVU). Figure 3 presents the comparison between the 
simulated and the measured room air temperature for 
a reference room for one winter day. 
 

 
Figure 3 Comparison between simulation and 

measurement for a reference room  
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The temperature drop during the time the window 
was open was achieved only by iteratively adjusting 
the air exchange rate until we had a good fit. The 
number of persons in the room was set according to 
the room book. We consider this to be a good fit. The 
amount of work needed to adjust the value for the air 
exchange rate in this case and the uncertainties about 
other influences over which we have no information 
(e.g. blinds) do not allow at this time for a more 
detailed verification of the model with measured 
data.  

Controller fine-tuning 
A deciding factor when starting to fine tune the 
controller is the number of iterations needed to 
achieve a (local) optimum. First a number of initial 
iterations are used for the controller to explore the 
area around its initialization point (initial controller). 
These are arbitrarily generated. After that, more 
iterations are used to identify the right “way” towards 
the optimum, by using Support Vector Machines 
(Bishop, 2006). Although the problem of determining 
the minimum sample size to perform multiple 
regression analysis has no unique answer, since the 
statistical properties of each application domain 
prevent definition of a general rule, several rules of 
thumb have been proposed in literature (Green, 
1991). In our case, using these rules as a guideline 
and under specific assumptions on the statistical 
correlation of the available data samples along with a 
trial-and-error process during the application of the 
method to all PEBBLE project test buildings, the 
following rules have been adopted for determining 
the number of necessary iterations: 

�0�N�Â�á�Ü�ä�Â�ç�ä L � s� ä� w� � � ®� � � 0� N�Ì�ç�Ô�ç�Ø�æ� � �® �0�N�¼�ç�å�ä�É�Ô�å�ä�����������:�u�;  
�0�N�Æ�Ô�ë�ä�Â�ç�ä L � t� ä� w� � � ®� � � 0� N�Ì�ç�Ô�ç�Ø�æ� � �® �0�N�¼�ç�å�ä�É�Ô�å�ä���������:�v�;  

For one tower this means 60 iterations. Furthermore 
the optimization algorithm runs four times, each time 
with 60 iterations, in order to make sure the 
algorithm did not get stuck, leading to a total of 240 
iterations. 
The number and type of states is a more complicated 
problem, which we solved by testing different 
combinations of states and comparing the end results 
(energy demand and comfort violations). At first we 
varied the type and number of states, for example 
considering only some of the ambient conditions. 
Then we substituted some states with other similar 
states, like using diffuse and beam radiation instead 
of the total radiation on the outside wall; or 
considering just the room air temperature and not 
also the air temperatures in the neighboring offices. 
Both of these considerations led to better controllers. 
Lastly we developed controllers where we used the 
square of the room temperature. This approach did 
not improve the controller. We forgo at this point the 
presentation of these results. Earlier work 
(Constantin et al., 2012) is available, where an earlier 
version of the simulation model and of the control 

problem is presented. The current version improves 
upon those results. 
Another important factor is the exploration area 
around the initial controller, used as a starting point 
in the optimization. If the search area for the initial 
explorations is wide enough, even a ‘naïve’ initial 
controller which only uses maximum allowed values 
can be optimized. Too wide an area is 
counterproductive, because the initial number of 
iterations might be insufficient to explore it correctly. 
We decided on the following rule: an exploration 
area is wide enough if the algorithm reaches similar 
results, when starting from three different initial 
controllers (C1, C2, and C3). C1 is similar to a state-
of-the-art rule-based controller, which takes the 
ambient temperature as the main parameter for 
calculating set values. Figure 4 presents the 
dependence on the ambient temperature for the set 
temperature for a FVU and for the flow temperature 
of the CCA. The curve for the CCA is exactly the 
one implemented in the BAS – system. Between 
18 °C and 22 °C ambient temperature the switch 
between heating to cooling mode occurs and the 
CCA is not used.    
The curve for the FVU does not allow the 
temperature to drop under 22 °C or rise above 26 °C. 
Furthermore between 22 °C and 26 °C the room air 
temperature follows the ambient temperature. In the 
actual building the FVU uses a simpler control 
strategy, with a fixed set point (by default 22 °C), 
which the user can adjust. The C1 rule-based 
controller will be used further as a reference for 
comparing the results from the CAO algorithm for 
offline experiments. 
 

 
Figure 4 Dependence on ambient temperature for the 

C1-Controller 
 

The C2 and C3 controllers are ‘naive’ controllers 
which use fixed set points for the control parameters 
(Tset,FVU and Tflow,CCA). The C2 controller leads to 
lower energy demand, the C3 controller to higher 
energy demand. Table 2 presents the two controllers 
for two test cases: one in winter and one in summer. 
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(updated hourly) and occupancy profiles. The 
occupancy profiles are similar to the ones used for 
offline simulations, but are further adapted to take 
into consideration the weekends.  
The initial state of the simulation has to be the 
current state of the building, especially when dealing 
with the thermal mass of the concrete activated 
ceiling. To this effect, a “warm up” of the model 
occurs before each new set of controllers is 
determined. Monitoring data for the last 72 hours is 
used: room air temperatures, ambient conditions, 
presence, and flow temperature of the CCA. The 
optimization then runs like in an offline experiment. 
At the end of the optimization the ߠ matrix is 
generated. Using actual measurements for the 
building’s states, the control parameters are 
calculated and sent to the building. Analogous to the 
data exchange rhythm in the co-simulation, new 
control parameters are calculated and sent to the 
building every ten minutes. 
A problem of the offline experiments is the 
evaluation. Only six offices in the building are 
reference rooms, where the energy consumption of 
the CCA and FVU can be measured. No two such 
rooms on the same floor have the same orientation. 
The occupancy profiles and the indoor comfort 
preferences of the people working in the offices are 
also different.  
The first online experiments involved only three 
rooms in a tower of type Tower NW, where the 
office on the 1st floor is a reference room. Only the 
set temperatures for the FVUs were controlled. We 
evaluated the trends in set temperature between the 
CAO controlled rooms and the neighboring rooms.  

DISCUSSION AND RESULT ANALYSIS 
Offline experiments 
The summer offline experiments were done for the 
24th and 25th July, a couple of warm summer days for 
the Aachen region, with a maximum of 27°C for the 
ambient temperature on both days. Controllers for all 
three towers were generated starting from the C1 
rule-based controller. For all three towers we have a 
reduction in the energy demand, for the Towers NW 
and NE up to 75% (Figure 8). Neither the 
initialization nor the optimization results had 
violations of the comfort constraint. 
 

 
Figure 8 Results for the CAO algorithm for each 

tower for the summer test case 
 

The Tower Corner has three times the energy 
demand of the other two towers after the 
optimization, although its floor area is less than twice 
the floor area of the other two. It does however have 
two outer walls and respectively a larger window 
area, which leads to higher gains through the solar 
radiation. The energy savings come partly from the 
dependence of the control parameters on more than 
just the ambient temperature, as is the case of the C1-
controller. Furthermore, the rule-based controller 
does not explicitly consider the comfort in terms of a 
constraint that has to be respected. In some cases in 
summer the rule-based controllers lead to better 
comfort values, which explain the higher energy 
demand. CAO however considers the comfort as a 
constraint and not as a part of the cost function. 
The winter cases were simulated for the 5th and 6th 
January, which are particularly cold days for Aachen, 
with a minimum ambient temperature of -6 °C.  For 
all three towers we have a reduction in the energy 
demand (Figure 9). However the improvements are 
lower than in the summer case: for the Towers NW 
and NE 10%, and for the Tower Corner 17%. Neither 
the initialization nor the optimization results had 
violations of the comfort constraint.  
The comfort levels for both controller types are 
similar. The energy savings come from using the 
weather and occupancy prediction and reducing the 
heating power because the gains through solar 
radiation or humans and machines can compensate 
for it. 
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Figure 9 Results for the CAO algorithm for each 

tower for the winter test case 
 

Online experiments 
The online experiments presented ran between 14th 
and 20th December 2012, which were typical winter 
days for the region Aachen with mean ambient 
temperatures of 0 °C. 
Figure 10 presents the set temperatures for four 
offices: the reference room on the 1st floor in the 
simulated tower (CAO), the office on its left (Left), 
the office on its right (Right) and the other reference 
room on the 1st floor (Reference). The latter belongs 
to another CCA area and has a south-east orientation.  

 
Figure 10 Set temperatures from the CAO algorithm 

and three not controlled rooms 
 

The set temperature from CAO is a combination of 
the results from the algorithm and the adjustment of 
the user in the room. CAO suggested temperatures of 
around 23 °C for the duration of the experiment, but 
the user decided on higher temperatures (23.7 °C). 
The set temperatures in the other offices are all 
determined by the users’ preferences. CAO leads to 
the lowest adjustment on the part of the user, 
combined also with a somewhat realistic level of the 
temperature. According to the indoor comfort 
requirements of the building, the temperature should 
not rise above 26 °C (as it does for the left office) or 
sink under 22 °C (as it does for the reference office). 

The set temperature does not actually reflect what 
happens in the office. Figure 11 shows the 
comparison between the set temperature in the 
reference room from the Tower NW (Set CAO) and 
the actual room air temperature (Measured). As the 
14th December was a Friday, the two lower peaks 
correspond to the weekend; the following are the 
working days in the week after, with peaks around 
noon according to the solar radiation and presence in 
the room. The drop at the end is due to natural 
ventilation through window opening. 
 

 
Figure 11 Comparison between the set temperature 

and the actual temperature in the room 
 

The figure shows how the technical equipment was 
not capable of reaching the set temperature. This has 
often been the case last winter, as the BAS-system 
and some FVU do not work properly. Further online 
experiments were suspended for this matter and will 
be restarted once the system works. 
These first online experiments were however useful 
in understanding how CAO reacts to a real case and 
how user reacts to the set temperatures generated by 
CAO. 

CONCLUSION 
We presented in this paper the implementation in a 
real building of a model-assisted fine-tuning 
methodology for control parameters. All the stages 
from building up the model for the building and 
technical equipment, to formulating the control 
problem and setting up the co-simulation were briefly 
discussed. The configuration of the method according 
to the building’s particularities was presented in more 
detail. 
Offline experiments meant to show the theoretical 
energy saving potential of the building were 
presented and offered promising results, of energy 
savings up to 75% in some cases in summer and 17% 
in winter, even when compared to very good rule-
based controllers (temperature setback for night 
mode, set temperatures depending on the ambient 
temperature). The real innovations of CAO when 
compared to rule-based controllers is the 
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consideration of the indoor comfort, along with the 
dependence of set temperatures on more than just the 
ambient temperature. 
Online experiments were theoretically possible, as 
the connection between building and co-simulation 
worked and actual data from the building as well as 
weather prediction data could be incorporated into 
the simulation. However because the BAS-system 
was not fully operational, not enough energy was 
made available to be distributed by the FVU and the 
CCA to the rooms. Furthermore not all FVU worked 
properly. A comparison between the measured and 
the set air temperature shows a difference of up to 
1 K during office hours.  
When comparing the set temperature calculated by 
CAO with the set temperatures from other 
neighboring offices, the CAO algorithm offers 
sensible set temperatures. Online experiments will be 
restarted as soon as the BAS-system is reliably 
working and will be extended to the whole CCA zone 
north. As future work the mediation of the discussed 
challenges regarding the evaluation process for the 
CAO controllers is planned; for example by 
comparing the results of a day when the CAO 
algorithm was used with a simulation of the same day 
using a rule based-controller. 

NOMENCLATURE 
BAS      = building automation system 
CAO     = cognitive adaptive optimization 
CCA      = concrete core activation  
FVU       = façade ventilation unit 
MPC      = model predictive control 
 ூǤூ௧Ǥ   = number of initial iterationsݎܰ
 ெ௫Ǥூ௧Ǥ = maximal number of iterationsݎܰ
 ௌ௧௧௦  = number of statesݎܰ
 ௧ǤǤ= number of control parametersݎܰ
PPD        = Fanger PPD index 
ܷ             = vector of the control parameters 
ܺ             = vector of the building states 
 matrix for the gains of the building states =             ߠ
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