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ABSTRACT

In orderto improve be energy effiiency, whilestill
insuring indoor confort for a nev non-residatial
building, a model-adgsted fine-tuing methoddogy
for contol parametess was impdmented. Dring
offline experimentswhere no combl parametes are
sent tothe building, the methd was configired
accordig to the paitularities ofthe building To
this pupose we usg a co-simiation, wherethe
optimizaion algoritim for the ontrol parangters
was comected to a siulation malel of the buitling
and its echnical eqyimert. The dfline experments
show pomising resits regardilg energy saings
when canpared to god rulebasal controllers.The
transitian to online &periments ignore challeging
as it depnds on thewvay the what building system
behaves.

INTRODUCTION

Modernnon-residentl buildings have to mediat the
trade-off between hif energy efftiency and qality
of the irdoor climate,as the first$ imposed b the
current energy savig policies European Wion,
2012) ad the latterhas a direcinfluence @ the
workersCproductivity (Seppaneret al., 2004). The
problem gets more challenging in the cae of
buildings with camplex energy systems using
renewabds, as no ehr methodalgy for desiging
their corirol strategyexists. In thispaper we paesent
the waysimulation @n assist in évising contralers
for such buildings wing a modkassisted cotrol
paramete fine-tuning methodolgy. The raeults
presentd in the papewere geneted in the poject
PEBBLE (Positive Energy Buibings thru Better
controL dEcisions) funded thragh the Seenth
Framevork Progranme of the Eurpean Union.

PEBBLE is an intenational project tha aims to
achievemaximal netenergy prodced for buitlings
by usingan intelligentcontrol proess. The chatinge
lies in the ability of tie buildingOsontrol systen to
make @most) re&time decisons under the
constraits of urpredictable use behavior,
occupary schedulingor weatherconditions. ®ven
partnersfrom Austria,France, Genany, Greeceand
Switzerbnd are involed in the prgect, includirg the
RWTH Aachen Uniersity. The ne building d the
E.ON Energy Resarch Centeris used as a

demonstration hilding, beirg the most omplex of
all three demongation buildings inthe prged.

At the core ofte energy cooept of the hilding lies
a hghly efficient turbo compessor driverneat pump
process that usgyeothermaknergy as a bat source.
The geothermafield has 40boreholes, &h 100 m
desp. The baseohd for heatng or coolingis covered
by a concrete ce activationsystem (CCA, whereas
thepeak load ahthe air qudly are achiegd in each
office with a faede ventilation unit (FVU).

For the PEBBIE project wechose to fous on the
north concrete are activationarea (Figurél), which
stretches overdl three floars of the biding and
includes 45 offies.

Arreen | el
Figure 1 Floor plan 2" floor with CCA zone north
marked

A building aupbmation systm (BAS) is installed.
However its prgramming isnot yet comgete as the
complexity of the systems ipves challeging. The
programming elies on a series of rule-based
controllers, whch sometimesome into caflict with

eat other. EBBLE proposes an pgtimization
algorithm that uses the BS as an iterface to
communicate wth the buildirg.

For the controlsirategy a mdel assistedine-tuning
methodology isemployed, naned cognitie adaptive
optimization (AO) (Giannkis et al., D11). The
method uses wather and ocupancy preittion just
like model predttive control(MPC) mettods. MPC
methods are gte popular for building control
(Siroky et al., D11) and havalready beeemployed
asearly as 1985Building upa state-spaceaodel for
an MPC modé can be time consumig and the
modeling assmptions can lead to sub-optimal
controllers fa a real buildng. CAO onthe other
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hand uses a simulation model of the building that
does not need to be further translated in a state-space
representation.

CAO’s goal is to optimize a cost function for the
energy demand under the constraint of user comfort.
It is an iterative method that estimates the effect of a
certain control strategy by using a simulation model
of the building and its technical equipment.

The method has the following advantages:

e Convergence is guaranteed under a general set
of assumptions (Kosmatopoulos, 2009)

e It can be used for any type of building,
regardless of its size or installed technical
equipment, as long as a simulation model can
be built for it

e Additional constraints are easily added

The paper continues with the presentation of the
control problem, the models and the interface for the
co-simulation. The offline experiments for the
configuration of the controller are detailed. We then
discuss the results from both offline and online
experiments.

SIMULATION

Control problem

We decided to implement the PEBBLE system for
temperature control in the offices, because their
climatisation concept offers an interesting problem to
tackle. The CCA system is located in the massive
concrete ceiling and can be used for cooling or
heating. It is a slow system and as such used for
covering the base load. The switch from cooling to
heating for the CCA is done according to the ambient
temperature. The flow temperature for the CCA
system is set for a whole group of offices, of which
the building has two: north and south. The heating
fluid (water) is then distributed through the system,
with approximately one CCA circuit per office. No
further control of the flow or temperature of the CCA
happens on a room level. The FVU is a much more
dynamic system, because it heats or cools the air
directly and is thus used for covering the peak load.
The FVU can both cool and heat during the course of
a day, as it is equipped with two heat exchangers.
The room air temperature is controlled by adjusting
the rotational speed of the ventilators and the valves
positions of the heat exchangers. The challenge is to
have the systems working together and not against
each other, as this is inefficient.

We decided on the following control parameters:
e the set temperatures for the FVUs
e the flow temperature for the CCA

Over the whole demonstration area this leads to 46
(45 FVUs + 1 temperature CCA) control parameters.
As we control each room temperature individually,
each room has to be modeled in detail. However such
a simulation model would lead to very long

simulations, so simplifications need to be made. As
the building is well insulated (Uy.s = 0.2 W/m K,
Uyindow= 1.2 W/mK) and all the offices have a
similar use, we assume the main factor that
differentiates them is their orientation. So instead of
simulating all 45 rooms, only exemplary rooms with
different orientations are simulated. To this purpose
we build “tower” models. A tower stretches over all
floors of the building and thus has three rooms, on
top of each other, one on each floor. The boundary
conditions towards neighboring offices are
considered adiabatic. Figure 2 shows the name and
the orientations of the resulting three towers. While
the results for Tower Corner can be used only for
these rooms in the real building, the results for the
other two towers can be used for all the rooms with
that orientation. For one tower we have four (three
FVU temperatures and one CCA temperature)
control parameters.

Tower NW  Tower Corner

Figure 2 Name and orientation of the three towers

The cost function of the optimization algorithm is the
minimization of the energy demand, which is the
thermal energy from the FVUs and the CCA. The
main constraint is the indoor comfort. For the
quantification of indoor comfort we use the Fanger
PPD (Predicted Percentage Dissatisfied) index
(Fanger, 1970). The Fanger PPD index depends on
the air temperature, the mean radiant temperature, the
air velocity and the vapor pressure of air in the room
and also on the cloth index, which is a function of
outside temperature. We formulate the constraint as:

22& QW 'S;
The constraint can be violated, however for no more

than 15 minutes during a simulation run, in our case
two days.

The controller is a P-controller, which calculates the
control parameters (four for one tower) as a linear
combination of states in the building:
7 L:a

where 7 L(:8c@;@5® are the control
parameters, L>Jas B, B BghB. P are the states
in the building and & D 84 is the matrix of the
gains with which each state factors into each
controller. The ¢ matrix is continuously improved
during the optimization algorithm, until an optimum
of the cost function is found.
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The states used for the controller are detailed in
Table 1. More details about the way the states were
selected for the final controller are given in the
controller fine tuning chapter.

Table 1 States for calculating the control parameters

State Description
X1 Ambient temperature in °C
X Wind speed in m/s
X3 Diffuse solar radiation in W/m
Xy Beam solar radiation in W/m
X5 Room air temperature in °C
X Presence as Boolean (0 or 1)

For the set temperature in each room, the
corresponding room air temperature and presence for
that room are considered. For the CCA (u,) the mean
room air temperature of all three rooms is used.

The optimization algorithm is implemented in
MATLAB.

Co-Simulation

The simulation model was build using the modeling
language Modelica in the simulation environment
Dymola. For connecting the optimization algorithm
with the simulation model we used the BCVTB
(Building Controls Virtual Test Bed) software
(Wetter and Haves, 2008).

The optimization algorithm runs iteratively and uses
a simulation model to calculate the energy demand
and the comfort level determined by a 8 matrix. We
use a simulation period of two days for such a test.
At the beginning of each iteration a new matrix 6 is
generated, the co-simulation runs and at the end of it
the cost function and constraints are evaluated.
Afterwards the 6 matrix is improved by the
optimization algorithm and tested in a new iteration.
During the co-simulation the model exchanges data
with the optimization algorithm every ten minutes
simulation time. The model sends the building states,
as well as the current values for the energy
consumption and the PPD index. Using this data the
optimization algorithm calculates the new values for
the control parameters and sends them back to the
simulation model. The new values for the control
parameters are set in the simulation and new states
are generated.

Models for the building and technical equipment

A detailed thermal simulation model for the selected
area is a prerequisite for the building’s optimization
and control process. The model takes into account
geometries, building physics, installed HVAC and
energy generation systems. It has a degree of detail
that allows a thorough wvalidation, as well as
acceptable simulation durations.

The tower model was done using components from
our Modelica libraries (Miiller and Badakhshani,
2010). Each wall, window and door is individually
modeled. The air volume in each room is modeled as

one node. One typical office room with an outer wall
(Tower NW and Tower NE) has a floor area of 19 m
with a height of 3 m and a window area of 8 m . The
Tower Corner has larger rooms with two outer walls
and a floor area of 32 m . The windows are equipped
with external blinds, which activate once the incident
solar radiation exceeds 180 W/m .

The following internal loads are considered: humans,
machines and lights as convective and radiant heat
loads and humans as CO, sources (VDI 2078, 1996).

The technical equipment is modeled in detail. The
model for the CCA is a physical model, with the
pipes inserted between the concrete layers. The FVU
can heat, cool and ventilate the rooms. The control
strategy is modeled exactly as in the actual unit.
During night time, when the office is not used, the set
temperatures are adjusted, so that the unit remains in
standby. For cooling the set temperature is increased
with 5 K, and for heating it is decreased with the
same amount. The heater, cooler and ventilator
models are almost ideal; meaning once they are
activated the reaction in the room temperature is fast.
In reality we would have a delay caused by several
factors: the furniture in the room, the opening of a
window etc. The simplification of using just one air
node per room and the goal of achieving short
simulation durations justifies in this case the
selection of almost ideal components.

The verification of the simulation model with
measurement data is only partially possible. The
building has several sensors installed in each room
(presence, window opening, temperature, CO,-
concentration). Weather data is provided by a nearby
weather station. However we have no information
about the position of the blinds, the number of people
who are in the room at one time, or the number and
type of machines which are in use. For such a well-
insulated building these types of internal gains have a
considerable effect on the room air and radiant
temperature. Several rooms are reference rooms,
where extra measuring equipment was installed to
measure the energy fluxes in the room (CCA and
FVU). Figure 3 presents the comparison between the
simulated and the measured room air temperature for
a reference room for one winter day.
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Figure 3 Comparison between simulation and
measurement for a reference room
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The temperature drop during the time the window
was open was achieved only by iteratively adjusting
the air exchange rate until we had a good fit. The
number of persons in the room was set according to
the room book. We consider this to be a good fit. The
amount of work needed to adjust the value for the air
exchange rate in this case and the uncertainties about
other influences over which we have no information
(e.g. blinds) do not allow at this time for a more
detailed verification of the model with measured
data.

Controller fine-tuning

A deciding factor when starting to fine tune the
controller is the number of iterations needed to
achieve a (local) optimum. First a number of initial
iterations are used for the controller to explore the
area around its initialization point (initial controller).
These are arbitrarily generated. After that, more
iterations are used to identify the right “way” towards
the optimum, by using Support Vector Machines
(Bishop, 2006). Although the problem of determining
the minimum sample size to perform multiple
regression analysis has no unique answer, since the
statistical properties of each application domain
prevent definition of a general rule, several rules of
thumb have been proposed in literature (Green,
1991). In our case, using these rules as a guideline
and under specific assumptions on the statistical
correlation of the available data samples along with a
trial-and-error process during the application of the
method to all PEBBLE project test buildings, the
following rules have been adopted for determining
the number of necessary iterations:

ONavakess 8 Wico@r B0 044 ¢
OMoeadest @ WicoRo D MBN:e0 a4

For one tower this means 60 iterations. Furthermore
the optimization algorithm runs four times, each time
with 60 iterations, in order to make sure the
algorithm did not get stuck, leading to a total of 240
iterations.

The number and type of states is a more complicated
problem, which we solved by testing different
combinations of states and comparing the end results
(energy demand and comfort violations). At first we
varied the type and number of states, for example
considering only some of the ambient conditions.
Then we substituted some states with other similar
states, like using diffuse and beam radiation instead
of the total radiation on the outside wall; or
considering just the room air temperature and not
also the air temperatures in the neighboring offices.
Both of these considerations led to better controllers.
Lastly we developed controllers where we used the
square of the room temperature. This approach did
not improve the controller. We forgo at this point the
presentation of these results. Earlier work
(Constantin et al., 2012) is available, where an earlier
version of the simulation model and of the control

problem is presented. The current version improves
upon those results.

Another important factor is the exploration area
around the initial controller, used as a starting point
in the optimization. If the search area for the initial
explorations is wide enough, even a ‘naive’ initial
controller which only uses maximum allowed values
can be optimized. Too wide an area is
counterproductive, because the initial number of
iterations might be insufficient to explore it correctly.
We decided on the following rule: an exploration
area is wide enough if the algorithm reaches similar
results, when starting from three different initial
controllers (C1, C2, and C3). Cl1 is similar to a state-
of-the-art rule-based controller, which takes the
ambient temperature as the main parameter for
calculating set wvalues. Figure 4 presents the
dependence on the ambient temperature for the set
temperature for a FVU and for the flow temperature
of the CCA. The curve for the CCA is exactly the
one implemented in the BAS — system. Between
18 °C and 22 °C ambient temperature the switch
between heating to cooling mode occurs and the
CCA is not used.

The curve for the FVU does not allow the
temperature to drop under 22 °C or rise above 26 °C.
Furthermore between 22 °C and 26 °C the room air
temperature follows the ambient temperature. In the
actual building the FVU uses a simpler control
strategy, with a fixed set point (by default 22 °C),
which the user can adjust. The C1 rule-based
controller will be used further as a reference for
comparing the results from the CAO algorithm for
offline experiments.

Tset FVU e e = Tflow CCA
3B Lo
930 F——S<g
£ Ss
o 27 SS
E04 Ss. /
g /
%21 <
S 18 sl
15 : : . : .
-15 -5 5 15 25 35

Ambient temperature in °C

Figure 4 Dependence on ambient temperature for the
C1-Controller

The C2 and C3 controllers are ‘naive’ controllers
which use fixed set points for the control parameters
(Teetpvu and Taewcca). The C2 controller leads to
lower energy demand, the C3 controller to higher
energy demand. Table 2 presents the two controllers
for two test cases: one in winter and one in summer.
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Table 20verview othe C2 and G controllersfor
the summeand winter tet cases

Controller Teet, FvU Tiow, cca
C2 — Summer 26 °C 20°C
C3 — Summer 22°C 17 °C

C2 — Winter 22°C 25°C

C3 — Winter 24°C 32°C

The tests were offline experiments, each two days
long. The Tower NW was used. Further details about
the simulation setup are given in the next chapter.

The results for the energy demand for the whole
tower are presented in Figure 5 and Figure 6.
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Figure 5 Results whe starting fran three diffeent
initial controllers for the surmer ted case
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Figure 6 Results whe starting fron three diffeent
initial controllers for the wirier ted case

With the exception of the C3 controller, all other
controllers have no violations of the comfort
constraint at the initialization. For the summer test
case the initializations with C1 and C2 lead to the
same result (10.85 kWh), whereas C3 leads to a
worse result (11.5 kWh). For the winter test case all
three controllers lead to the same result (38.74 kWh).
As the C3 controller is the worst initial controller of

the set, the 6% difference to the optimization results
with the other controllers is considered acceptable
and no further tests are needed for the exploration
area.

For all tests the CAO algorithm leads to an
improvement on the initial case. In the case of C1 the
control strategy is even better than the one currently
implemented in the real building. As the Cl1 —
controller can be used as a reference for the results of
the optimization algorithm and it is close to a real
case, it was made the default initial controller.

EXPERIMENTS

Offline experiments

Offline experiments are experiments where no
control parameters are sent to the building. Here we
also only refer to experiments where no other
information from the building is used. Instead
standard weather data and occupancy profiles are
used. For the weather data we used the test reference
year, TRY 05, for the area of Aachen (DWD, 2010).
For the occupancy profiles we assumed continuous
occupation according to the room book, between 9
a.m. and 6 p.m. The machines are on when the users
are in the building, and go on standby during the
night.

The purpose of the offline experiments was to assess
how fast the sinmlation runs and how good it works
for all three towers. Summer and winter tests were
done. For each test a period of two days was
simulated, producing one set of controllers. To
produce a set of controllers for one tower takes
around 2.5 hours.

Online experiments

Online experiments are the experiments where data is
exchanged between the co-simulation and the
building (Figure 7).

Optimization (CAO)
in MATLAB

Building Controls Virtual Test Bed

Figure 7 Data exchangélows duringonline
simulations

Controllers are  developed and  deployed
continuously. They are developed with the help of a
two day simulation but will only be used for three to
four hours real time, during which a new controller is
generated with improved prediction data for the near
future. The simulation uses weather prediction data
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(updated hourly) and occupancy profiles. The
occupancy profiles are similar to the ones used for
offline simulations, but are further adapted to take
into consideration the weekends.

The initial state of the simulation has to be the
current state of the building, especially when dealing
with the thermal mass of the concrete activated
ceiling. To this effect, a “warm up” of the model
occurs before each new set of controllers is
determined. Monitoring data for the last 72 hours is
used: room air temperatures, ambient conditions,
presence, and flow temperature of the CCA. The
optimization then runs like in an offline experiment.

At the end of the optimization the 6 matrix is
generated. Using actual measurements for the
building’s states, the control parameters are
calculated and sent to the building. Analogous to the
data exchange rhythm in the co-simulation, new
control parameters are calculated and sent to the
building every ten minutes.

A problem of the offline experiments is the
evaluation. Only six offices in the building are
reference rooms, where the energy consumption of
the CCA and FVU can be measured. No two such
rooms on the same floor have the same orientation.
The occupancy profiles and the indoor comfort
preferences of the people working in the offices are
also different.

The first online experiments involved only three
rooms in a tower of type Tower NW, where the
office on the 1* floor is a reference room. Only the
set temperatures for the FVUs were controlled. We
evaluated the trends in set temperature between the
CAO controlled rooms and the neighboring rooms.

DISCUSSION AND RESULT ANALYSIS

Offline experiments

The summer offline experiments were done for the
24™ and 25™ July, a couple of warm summer days for
the Aachen region, with a maximum of 27°C for the
ambient temperature on both days. Controllers for all
three towers were generated starting from the Cl
rule-based controller. For all three towers we have a
reduction in the energy demand, for the Towers NW
and NE up to 75% (Figure 8). Neither the
initialization nor the optimization results had
violations of the comfort constraint.

= Initialization M Optimization
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Controller

Figure 8 Results for the CAO algorithm for each
tower for the summer test case

The Tower Corner has three times the energy
demand of the other two towers after the
optimization, although its floor area is less than twice
the floor area of the other two. It does however have
two outer walls and respectively a larger window
area, which leads to higher gains through the solar
radiation. The energy savings come partly from the
dependence of the control parameters on more than
just the ambient temperature, as is the case of the C1-
controller. Furthermore, the rule-based controller
does not explicitly consider the comfort in terms of a
constraint that has to be respected. In some cases in
summer the rule-based controllers lead to better
comfort values, which explain the higher energy
demand. CAO however considers the comfort as a
constraint and not as a part of the cost function.

The winter cases were simulated for the 5" and 6"
January, which are particularly cold days for Aachen,
with a minimum ambient temperature of -6 °C. For
all three towers we have a reduction in the energy
demand (Figure 9). However the improvements are
lower than in the summer case: for the Towers NW
and NE 10%, and for the Tower Corner 17%. Neither
the initialization nor the optimization results had
violations of the comfort constraint.

The comfort levels for both controller types are
similar. The energy savings come from using the
weather and occupancy prediction and reducing the
heating power because the gains through solar
radiation or humans and machines can compensate
for it.
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Figure 9 Results for the CAO algorithm for each
tower for the winter test case

Online experiments

The online experiments presented ran between 14"
and 20™ December 2012, which were typical winter
days for the region Aachen with mean ambient
temperatures of 0 °C.

Figure 10 presents the set temperatures for four
offices: the reference room on the 1* floor in the
simulated tower (CAO), the office on its left (Left),
the office on its right (Right) and the other reference
room on the 1* floor (Reference). The latter belongs
to another CCA area and has a south-east orientation.

CAO = e e [eft

27 1
eeseee Right Reference

26 = e - ——— — —— — — ———
s "
£25 4 "
£
524 . —
= PR
222 4
2
(IJ21 4

20 . T .

14.12 16. 12 18.12 20.12

Day of year
Figure 10 Set temperatures from the CAO algorithm
and three not controlled rooms

The set temperature from CAO is a combination of
the results from the algorithm and the adjustment of
the user in the room. CAO suggested temperatures of
around 23 °C for the duration of the experiment, but
the user decided on higher temperatures (23.7 °C).
The set temperatures in the other offices are all
determined by the users’ preferences. CAO leads to
the lowest adjustment on the part of the user,
combined also with a somewhat realistic level of the
temperature. According to the indoor comfort
requirements of the building, the temperature should
not rise above 26 °C (as it does for the left office) or
sink under 22 °C (as it does for the reference office).

The set temperature does not actually reflect what
happens in the office. Figure 11 shows the
comparison between the set temperature in the
reference room from the Tower NW (Set CAO) and
the actual room air temperature (Measured). As the
14™ December was a Friday, the two lower peaks
correspond to the weekend; the following are the
working days in the week after, with peaks around
noon according to the solar radiation and presence in
the room. The drop at the end is due to natural
ventilation through window opening.
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Figure 11 Comparison between the set temperature
and the actual temperature in the room

The figure shows how the technical equipment was
not capable of reaching the set temperature. This has
often been the case last winter, as the BAS-system
and some FVU do not work properly. Further online
experiments were suspended for this matter and will
be restarted once the system works.

These first online experiments were however useful
in understanding how CAO reacts to a real case and

how user reacts to the set temperatures generated by
CAO.

CONCLUSION

We presented in this paper the implementation in a
real building of a model-assisted fine-tuning
methodology for control parameters. All the stages
from building up the model for the building and
technical equipment, to formulating the control
problem and setting up the co-simulation were briefly
discussed. The configuration of the method according
to the building’s particularities was presented in more
detail.

Offline experiments meant to show the theoretical
energy saving potential of the building were
presented and offered promising results, of energy
savings up to 75% in some cases in summer and 17%
in winter, even when compared to very good rule-
based controllers (temperature setback for night
mode, set temperatures depending on the ambient
temperature). The real innovations of CAO when
compared to rule-based controllers is the
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consideration of the indoor comfort, along with the
dependence of set temperatures on more than just the
ambient temperature.

Online experiments were theoretically possible, as
the connection between building and co-simulation
worked and actual data from the building as well as
weather prediction data could be incorporated into
the simulation. However because the BAS-system
was not fully operational, not enough energy was
made available to be distributed by the FVU and the
CCA to the rooms. Furthermore not all FVU worked
properly. A comparison between the measured and
the set air temperature shows a difference of up to
1 K during office hours.

When comparing the set temperature calculated by
CAO with the set temperatures from other
neighboring offices, the CAO algorithm offers
sensible set temperatures. Online experiments will be
restarted as soon as the BAS-system is reliably
working and will be extended to the whole CCA zone
north. As future work the mediation of the discussed
challenges regarding the evaluation process for the
CAO controllers is planned; for example by
comparing the results of a day when the CAO
algorithm was used with a simulation of the same day
using a rule based-controller.

NOMENCLATURE

BAS = building automation system
CAO = cognitive adaptive optimization
CCA  =concrete core activation

FVU = facade ventilation unit

MPC = model predictive control
N1y e, = number of initial iterations
N7yaxe. = maximal number of iterations
N7gtates = number of states

N7¢tr par.= number of control parameters

PPD = Fanger PPD index

U = vector of the control parameters

X = vector of the building states

0 = matrix for the gains of the building states
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