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The selected topmost variables have been arranged 
according to the fact that they were: 
�x input variables, representing the driving features 

of the specific system (weather, trains, number 
of people, fan control inputs); 

�x state variables, in relation to the main physical 
processes: heat transfer (air temperature, surface 
temperature, heat gains), fluid dynamics 
(airflows, pressure drops related to airflow 
resistance, geometrical features and buoyancy), 
pollutant diffusion (CO2 and PM10 
concentrations); 

�x output variables: energy consumptions, air 
change rates, comfort. 

At the end of the first phase a set of 97 variables 
were selected. Despite the extremely severe reduction 
rate, this set is still too large for being completely 
coupled with a monitoring sensor network. 
Furthermore some of these variables cannot be 
directly and easily measured such as the local 
pressure drop due to geometrical features of the 
space. So a further phase of variable reduction was 
performed through a statistical clustering. 

Statistical Clustering 
Statistical clustering was used to find out ‘far’ 
correlations among variables, that is, correlation that 
cannot be induced from the equation structure of the 
model and that can be identified only by means of 
simulation results. Several steps of statistical 
clustering were performed using the ClustOfVar 
(Chavent et al., 2011) package of the R software (R-
project, 2012).  
In this package, two methods are used for the 
clustering of variables: a hierarchical clustering 
algorithm and a k-means type partitioning algorithm. 
A cluster of variables is defined as homogeneous 
when the variables in the cluster are strongly linked 
to a central quantitative synthetic variable. This link 
is measured by the squared Pearson correlation for 
the quantitative variables and by the correlation ratio 
for the qualitative variables. Using this aggregation 
measure, the algorithm builds a hierarchy, called 
dendrogram. In a dendrogram, the height (y axis) is 
the dissimilarity, measuring the loss of homogeneity 
observed when two clusters are merged. 
The statistical computations are based on a dataset 
consisting of simulation results of the Modelica 
station platform model run for one month (April) and 
a time step of one hour. The weather conditions were 
derived from the IWEC weather file (ASHRAE, 
2001), internal gains were set to typical values 
achieved from the station manager and a random 
schedule was used as control input for ventilation 
equipment, in order to excite the relevant process 
dynamics. 
Figure 5 shows the cluster dendrogram for the initial 
set of 97 variables, which manifests a clear 

separation in two groups of variables. The two 
groups are related to the two main physical 
processes: thermal (cluster on the right of figure 5) 
and airflow (on the left of figure 5). The left side of 
the cluster dendrogram is composed by variables 
related to the airflow and to the fans, like pressure 
drop, volume flow rate, net flow and air change rate 
and fan power. The right hand of the dendrogram 
contains variables related to the thermal process, like 
internal heat gains, mean air temperature and surface 
temperature, comfort related variables and the 
weather variables (dry bulb temperature, relative 
humidity, wind speed, etc.). It also contains the 
variables representing the pressure drops related to 
the different heights (that is the driving mechanism 
of the buoyancy effect is included in the reduction).  
The clustering process proceed iteratively. At each 
step, the resulting clusters were analysed and some 
variables were deleted or replaced with synthetic 
ones when a cluster contained:  
�x variables of the same physical quantity (e.g. all 

the pressure drops due to buoyancy); 
�x variables contributing to the same physical 

process (e.g. airflow and pressure drops through 
an opening); 

�x variables correlated by the spatial topology of 
the building. 

The two sub-clusters were analysed separately. 
Figure 6 represents the last step of “thermal cluster”, 
consisting of 17 variables. There are three groups of 
variables well correlated each other and that can be 
quite easily connoted. In fact, all the variables related 
to temperature are grouped (“temperature 
differential” zone in Figure 6): buoyancy pressure, 
Fanger Comfort Index (PMV and PPD), zone 
temperature and outdoor temperature. This is quite 
interesting because it points out that the buoyancy 
process and weather condition are related to the zone 
temperature and to the thermal comfort. This 
suggests that outdoor and indoor temperature 
variables are sufficient to represent these aspects. A 
further group emerging is the one called “heat gains” 
in Figure 6. This group contains variables 
representing the trains, the people and the gains from 
the other equipment. The PM10 concentration is 
contained in this group as well. This variable is not 
considered so far, as the pollutant model will be 
developed during the next project year. The last 
group of variables refers mainly to external weather. 
Finally, the first branch on the left is weakly 
correlated to the others and contains the surface 
temperature, the external pressure and the static 
pressure of the platform.   
Concerning the “airflow cluster” (Figure 7) it can be 
noticed that all the variables related to the tunnel are 
grouped and are not strongly correlated to the other 
variables. The other variables are mainly divided in 
two groups, related to the station fans (only exception  
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optimization of the Bayesian Models either in term of 
the model structure and variable domain 
discretization. The overall structure will be 
completed introducing the pollutant representation, 
and will be calibrated with measured data as soon as 
data from the sensor network will be available. 
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