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ABSTRACT
Choosing the optimal combination of building compo-

nents that minimize investment and operational costs is a
topic of great importance in the building simulation com-
munity. Optimization using simulation tools, i.e., Energy-
Plus, becomes computationally expensive for traditional
search approaches. An additional challenge is the com-
plexity of the input parameter space, which is usually very
large and contains both continuous and discrete variables.
In this paper, we present a novel approach to address both
of these problems. The key idea of the proposed approach
is to first build a statistical surrogate model for the en-
ergy simulation model and to then update the surrogate
model based on the concept of sequential design of ex-
periments. We demonstrate the proposed approach using
a case study of a live retrofit project for Building 661 at
the Navy Yard of Philadelphia, USA. Results show that
the statistical surrogate model allows for fast evaluation of
the building’s energy consumption, and the sequential de-
sign reduces the computational cost by requiring a smaller
number of runs of the energy simulation model.

INTRODUCTION
Building envelope is main source of heat loss/gain, and

hence has great impact on building heating/cooling energy
consumptions. Therefore, choosing the optimal combi-
nation of building envelope components that minimizes
investment and operational cost is a topic of great impor-
tance to the building simulation community. Traditional
approaches often require a massive number of evaluations
of energy simulation models such as EnergyPlus, Energy-
Plus (2011). The major challenge of such approaches is
high computational cost, especially in a realistic environ-
mental context, as the search space is usually very large.
In addition, the set of input parameters often contains both
continuous and discrete variables, as most variables in real
envelope design problems are discrete in nature. For ex-
ample, there are only a finite number of types of glass
materials available, which take finitely many values in
each defining feature. Moreover, the different properties

of glass are not independent of each other and can only
take on a given set of combinations.

In this paper, we present a novel approach to address
these challenges. The key idea of the proposed approach
is to build a statistical surrogate model for the energy
simulation model and update this model using new ob-
servations based on a sequential design of experiments.
At the beginning of the algorithm, the energy simulation
model is executed on an original space-filling design in
order to build a statistical surrogate model in the form of
a response surface defined on the input space of the en-
ergy simulation model. An expected improvement func-
tion then guides the search for the optimal combination
in a sequential design step: A new design point will be
defined as the vector of input parameter values that max-
imizes a predefined expected improvement function. The
energy simulation model is then executed at the new de-
sign point and the surrogate model is updated to incorpo-
rate the result at the new design point. The algorithm iter-
ates between the surrogate model building step and the se-
quential design step until the increase of the expected im-
provement function becomes negligible. We demonstrate
the proposed approach using a case study of a live retrofit
project for Building 661 at the Navy Yard of Philadelphia,
USA, and show that the statistical surrogate model allows
for fast estimation of the building’s optimal energy con-
sumption by reducing the number of energy simulation
model runs required.

RELATED WORK
Solving optimization problems in the design and oper-

ation of energy efficient buildings has attracted a range of
research efforts. See, for example, Asadi et al. (2012),
Huchtemann and Müller (2012), Fesanghary, Asadi, and
Geem (2012), Pang et al. (2012), Hazyuk, Ghiaus, and
Penhouet (2012), Stazi, Mastrucci, and Munaf (2012)
and Ellis et al. (2006). With increasing complexity of
building systems, advancements in building simulation
tools, and fast growth of computing capability, more and
more research efforts focus on simulation-based optimiza-

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2584 -



tion. For example, the Generic Optimization Program
(GenOpt) developed by Wetter (2004) implemented sev-
eral search algorithms that work with building simulation
programs. In Wetter and Wright (2004), the authors fur-
ther compare the performance of nine optimization algo-
rithms including direct search algorithms (e.g., coordinate
search), stochastic population-based algorithms (e.g., a
genetic algorithm), a hybrid particle swarm Hooke-Jeeves
algorithm and a gradient-based algorithm. They conclude
that the hybrid particle swarm Hooke-Jeeves algorithm
yields the greatest reduction in their cost function, how-
ever, the computing cost is extremely high. The compu-
tational cost of building simulation programs also poses
challenges in the control of building operations. As noted
in Zhu et al. (2012), the intensive computation involved
in the simulation makes on-line decision making infeasi-
ble. Although the two-stage scheme proposed in the paper
facilitates decision making process, the off-line stage of
the approach, which relies on an exhaustive search algo-
rithm, can be very time consuming. Most studies point out
that building energy simulation is expensive, yet there is a
lack of efficient methods which can reduce this simulation
cost.

In this paper, we propose a novel approach to over-
come the computational complexity involved in the sim-
ulation models. Our approach is largely based on the
statistical surrogate modeling ideas in statistical litera-
ture (Sacks and Wynn 1989, Santner, Williams, and Notz
2003, Kennedy and O’Hagan 2001, Bayarri et al. 2007a,
Bayarri et al. 2007b). A simulation model is essentially
a model describing an input-output relationship. As the
model gets exceedingly complex, the simulation model is
often treated as a “black box”. Sacks and Wynn (1989)
proposed to model the response of the simulation model
nonparametrically by a stochastic process. For scalar
output, the Gaussian response surface approach, adopted
from kriging in the spatial statistics (Cressie 1993), is a
typical approach for building a surrogate model. A Gaus-
sian process is assumed as the prior distribution of the
simulation model. Given a collection of runs obtained
by executing the simulation model, applying the Bayesian
updating mechanism of learning, we obtain the posterior
distribution of the simulation model. The posterior dis-
tribution is then used as a surrogate model to the simula-
tion model, i.e., at any untried input values, we can obtain
the posterior distribution of the corresponding simulation
model ouput. We remark that the surrogate model pro-
vides not only a mean estimate of the simulation output,
but also the associated uncertainty at the new input.

The proposed approach is also closely related to the
design of computer experiments, which concerns the se-
lection of input parameters at which the computer model
shall be executed. The use of the nonparameteric model

for surrogate modeling necessitates space-filling designs
such as maximin distance designs and Latin Hypercube
designs (Box, Hunter, and Hunter 1978, McKay, Beck-
man, and Conover 1979, Johnson, Moore, and Ylvisaker
1990). In fact, the performance of the resulting surro-
gate models largely depends on the distance between an
arbitrarily selected point and the training points in the in-
put space. Space filling designs are derived to minimize
such distances (Bursztyn and Steinberg 2006). Another
related concept is the sequential design of computer ex-
periments. Under the sequential design strategy, inputs
are selected sequentially so that improvements over the
current optimal input are expected to be large. A se-
quential design typically requires fewer runs of the sim-
ulation model, and is particularly suitable in the context
of building simulation models given the related compu-
tational cost. See MacKay (1992), Cohn (1996), Jones,
Schonlau, and Welch (1998) and Gramacy and Lee (2009)
for more details on this topic.

METHOD
Problem Statement

The live retrofit of Building 661 on the Philadelphia
Navy Yard was chosen as case study of the optimal build-
ing enclosure design using sequential design via statistical
surrogate models. The objective is to minimize energy
consumption, specifically, Energy Use Intensity (EUI),
which is defined as energy use per floor area. The his-
toric building features a shared open space at the back
with gross area of about 1600m2, and a two-story space
in the front with gross area of about 800m2 for each floor.
After the retrofit, the building will house personnel of the
EEB Hub (Energy Efficient Building Hub – established
by the US Department of Energy (DOE) as an Energy
Regional Innovation Cluster), and will function as a liv-
ing laboratory for tools and methods that are intended to
transform the building industry’s current fragmented se-
rial method into integrated team efforts. The building
model is shown in Figure 1. The building at the center
with pitched roofs and windows is Building 661. Three
immediate neighbouring buildings are also presented in
the figure and modeled in the simulation model as shad-
ing surfaces.

In the search of the optimal envelope design, we con-
sider a high dimensional variable space that comprises al-
ternative materials for the external wall insulation, roof
insulation, different glazing types and different infiltration
levels. The variables under consideration in this study and
their corresponding ranges are listed in Table 1. The insu-
lation materials’ R values are obtained from manufactur-
ers’ product catalogues. The upper bound of the wall in-
sulation thickness is the thickness required to obtain an R
value of R-60. The thickness range of the roof insulation
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Figure 1: SketchUp model of Building 661 and surround-
ing buildings.

is based on the thickness required to achieve an overall R
value of R-5 to R-90. The infiltration range is selected
based on infiltration values in DOE reference building
models for offices. The properties of the glazing materials
are obtained from the LBNL Windows 7 software, which
contains a database of 2695 types of glass available from
manufacturers. The variables related to glass are taken as
categorical variables, and can only take the combination
of values represented among the 2695 types. Since opti-
cal properties of glass are interrelated, constraints on these
variables are also defined.

The formulation of our optimization problem is defined
as follows:

minimize
x

EUI(x)

subject to x7 + x8  1,
x7 + x9  1,

x10 + x11  1,
x10 + x12  1,
x ⌫ L, x �U,

where x 2 X , X ⇢ Rp, p = 15 is the vector of indepen-
dent variables, as listed in Table 1. EUI : X ! R is the
cost function and is computed by EnergyPlus, given input
vector x. L,U ⇢Rp are the lower and upper bounds of the
variables, which are listed in Table 1.

Surrogate Model
Computational cost is the major limitation for effi-

ciently employing EnergyPlus or any other simulation
model for building design and retrofit. Computation time
of building energy simulation is dependent on the com-
plexity of building configurations such as building geome-
try and mechanical systems, and the algorithm used in the
simulation program. Simulation time for a single model
typically ranges from a few minutes (4 to 5 minutes) to
more than an hour. In our demonstration model, we used
a model of a two-story building with simple mechanical
systems in EnergyPlus, and the run time is 9 minutes. An
exhaustive search that would run EnergyPlus for all possi-
ble combinations of materials/components (2695 possible

Table 1: The variable space for optimal building envelope
design, and the ranges of the variables.

Variable
xi

Variable Description Lower
bound

Upper
bound

Wall insulation:
x1 Thickness (m) 0.05 0.526
x2 R Value (K ·m2/W ) 0.51 2.21

Roof insulation:
x3 Thickness (m) 0.091 0.343
x4 R Value (K ·m2/W ) 0.51 2.21

x5 Infiltration: (m3/s ·m2) 0.00012 0.0012

Glazing:
x6 Thickness (mm) 0.038 26.67
x7 Solar transmittance(%) 0.0003 0.91
x8 Front solar reflectance (%) 0.03 0.83
x9 Back solar reflectance (%) 0.03 0.81
x10 Visible transmittance (%) 0.0 0.92
x11 Front visible reflectance (%) 0.01 0.70
x12 Back visible reflectance (%) 0.01 0.72
x13 Front infra-red hemispherical

emissivity(%)
0.01 0.96

x14 Back infra-red hemispherical
emissivity (%)

0.01 0.96

x15 Conductivity (W/m · k) 0.13 1.01

feature combinations for glass material, combined with
continuous values for wall and roof materials) is not fea-
sible. To overcome this difficulty, we rely on a statistical
surrogate modeling approach.

EnergyPlus is deterministic, i.e., executing a model
twice with the same input value yields two identical out-
put values. This is an important perspective we need to
take into account in the surrogate model. A popular statis-
tical approach to handle computationally expensive deter-
ministic simulation models is the Gaussian Response Sur-
face Approximation (GASP) method (Sacks and Wynn
1989). It treats the simulation model as an unknown
function describing the input-output relationship between
model parameters and EUI. A Gaussian process is then as-
signed as the prior distribution of the unknown function.
Initial runs of the simulation model are selected accord-
ing to a specified design criterion. See the next section,
“Initial Design”, for more details of the criterion on the
design. The corresponding outputs, together with their
inputs are then used to update the posterior distribution
of the unknown function. This will yield a response sur-
face of the simulation model over the entire input param-
eter space, which provides the predictive distribution of
the simulation model at any model input. The response
surface, or the predictive distribution of the simulation
model, is referred to as a statistical surrogate model to the
simulation model. Since evaluating the response surface
is very fast, we may use the surrogate model for further
analysis, instead of the computationally expensive simu-
lation model.

Let p be the number of input parameters the user spec-
ifies for the EnergyPlus model. Denote the feasible space
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for the input parameters of the model by X , X ⇢ Rp.
Let Y (xi) denote the EnergyPlus model output, where
xi = (xi1, . . . ,xip) 2 X . The prior distribution for the re-
sponse Y (·) takes the following form

Y (·)⇠ GP(µ,s2c(·, ·)) ,

where µ is the mean, s2 is the variance, and c(·, ·) is the
correlation function of the Gaussian process. The Gaus-
sian process is widely used to model data observed over
space. It has the property that the joint distribution of Y (·)
at a finite set of points x1, . . . ,xn has a n-dimensional mul-
tivariate normal distribution, for which the covariance be-
tween Y (xi) and Y (x j) is equal to s2c(xi,x j). In this pa-
per, we use a separable form of the correlation function
defined as

c(xi,x j) = exp(�
p

Â
k=1

bk | xik �x jk |ak).

Let X = (x1, . . . ,xn) be a design of the input parame-
ters (e.g., a collection of input vectors) and Y be the vec-
tor of corresponding outputs. Consider a specific input
x at which Y (x) has not been observed. Let r be the n-
dimensional vector with the ith element c(x,xi) and S be
the n⇥n matrix with the (i, j) element c(xi,x j). The pos-
terior predictive distribution for Y (x) can be written as

[Y (x) | X,Y]⇠ N(bµ(x), ŝ2(x)) ,

where

bµ(x) = S�1r0Y, and ŝ2(x) = s2 �1�r0S�1r
�
. (1)

We estimate the model parameters in the Gaussian process
using mlegp in R (R Core Team 2012). Mean and vari-
ance in (1) can be evaluated at all possible input vector
at negligible computational cost. This Gaussian process
represents a response surface which models the input out-
put relationship, providing a statistical surrogate model to
EnergyPlus.

Initial Design
To build the initial surrogate model, we need to obtain

an initial design for EnergyPlus. When there is no prior
information on the functional behavior of the response, it
is appealing to spread out design points uniformly over
the input space, as interesting features of the simulation
model are equally likely to appear across the input space.
As such, a space-filling design is appropriate for initial
planning of an energy simulation.

For xi,x j 2 Rp, let d be the Euclidean distance defined
by

d(xi,x j) =

 
p

Â
k=1

|xik � x jk|2
!1/2

. (2)

A criterion function based on d is

fl(X) =

"

Â
xi,x j2X

d(xi,x j)
�l

#1/l

(3)

with a positive integer l (Morris and Mitchell 1995).
Note that a design X⇤ minimizing (3) for l = • is called
maximin distance design (Johnson, Moore, and Ylvisaker
1990) and satisfies

min
xi,x j2X⇤

d(xi,x j) = max
X⇢X

min
xi,x j2X

d(xi,x j). (4)

For more on the design criterion, see Santner, Williams,
and Notz (2003) and references therein.

Inspired by Stinstra et al. (2003), we obtain an initial
design for a given l by first generating a random design
and then sequentially improving the overall design via op-
timizing one individual input combination (“run”) while
fixing the remaining runs. For a design X of n runs, define
Xi to be a design of n� 1 runs deleting the ith run, and
define Xi(x) as design Xi augmented by a new input x. It
is easy to see that fl(Xi(x)) is a function of x only, as the
remaining n�1 runs are fixed. Now we have n reduced Si
problems

Si : argmin
x2X

fl(X⇤
i (x)) (5)

Let x⇤ be the solution of Si and X⇤
i the design Xi aug-

mented by x⇤. Now the design is constructed by Algo-
rithm 1:

Algorithm 1
Define initial solution X;
fold := fl(X);
while improvement > e do

do improvement := 0;
for i = 1 to N do

solve Si;
improvement := fold �fl(X⇤

i );
fold := fl(X⇤

i );
X := X⇤

i ;
end for

end while

This algorithm is a modified version of Stinstra et al.
(2003). Each Si is easily solved as only one xi needs to be
updated at a time. Attainment of a global optimum cannot
be guaranteed due to the heuristic nature of the algorithm,
but it proves to perform well in practice. To illustrate, a
two-dimensional design of 15 runs obtained by Algorithm
1 is presented in Figure 2 where X = {x : x1 + x2  1}
with l = 20. The selection of l greatly depends on the
specific problem, such as the dimension and size of the
design. With a small value of l, the algorithm tends to
reduce f quickly during initial steps, but struggles to im-
prove in later steps of the algorithm, while the algorithm
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Figure 2: Projection of a two-dimensional design of 15
runs obtained by Algorithm 1, where X = {x : x1 + x2 
1}.

converges more slowly in the beginning steps with larger
l. To construct the initial design for our case study, l was
chosen to be 20. The constrained optimization for Si is
performed using constrOptim in R (R Core Team 2012).

Sequential Design
We utilize the response surface of the surrogate model

to solve the global optimization problem of finding the
optimal combination of building components. The search
space is explored according to a strategy that balances lo-
cal and global search. On the one hand, the search should
explore component combinations that promise the low-
est EUI according to the surrogate model. Following this
strategy would however easily result in a local minimum
close to observed locations in the search space. Globally,
on the other hand, it may be preferrable to explore areas
in the search space where uncertainty about the response
behavior is still great. The concept of expected improve-
ment (Jones, Schonlau, and Welch 1998) balances these
two contradicting arguments and, for a given input vector
x, is defined as the following expectation:

E
⇥
I(x)

⇤
= E

⇥
max(ymin �Y,0)

⇤
, (6)

where ymin = min{Y} is the smallest function value
among all observed responses. In the case of a Gaussian
process response surface, this expectation can be com-
puted as

E
⇥
I(x)

⇤
= (ymin �bµ(x))F

⇣ymin �bµ(x)
ŝ(x)

⌘

+ŝ(x)f
⇣ymin �bµ(x)

ŝ(x)

⌘ (7)

using the parameter estimates derived according to (1).
Here, F is the distribution function of a standard normal
distribution, and f is the corresponding density function.
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Figure 3: Fitted model (dotted line) of an unobserved
function (solid line) plotted along standard error esti-
mates for fitted values (dashed line, Figure (a)) and con-
trasted with expected improvement (grey line, Figure (b)).

As an example, Figure 3 visualizes the tradeoff between
local minima and uncertainty about the fitted surrogate
model for a one-dimensional function f . Red dots rep-
resent the observed responses that have been obtained by
evaluating f at selected sample points. Based on the fitted
response surface (dotted line) only, we might expect the
minimum of f to be at x = 9.4. However, our uncertainty
about the response, expressed as the standard error of the
fitted value bµ(x), is greatest between 2 and 4 (dashed line
in Figure 3(a)). The expected improvement according to
(7) is represented as a grey line in Figure 2.b. Balancing
uncertainty about the response and a small value of bµ(x)
leads the search algorithm to suggest a new exploration
point at x = 2.6, the point at which the expected improve-
ment is maximized.

To find the x⇤ which maximizes the expected improve-
ment, we may use readily available functions for opti-
mization of continuous functions with constraints, such as
the function optim() in R (R Core Team 2012), using the
method = "L-BFGS-B" option for the Brouden, Fletcher,
Goldfarb and Shanno method with box constraints (Byrd
et al. 1995). In this particular application, however, we
encounter variables that are discrete, and we only allow
for K = 2695 distinct combinations of these variables
(“slices”). The combination of variables that leads to
the greatest expected improvement is thus found in two
stages. Let X (k) be the feasible space of parameter values
in which the variables corresponding to the discrete glass
characteristics are fixed at combination k, k 2 1, . . . ,K. In
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the first stage, for each k, we maximize expected improve-
ment over all continuous variables. In the second stage,
we then compare maximum expected improvement across
all slices and choose the combination with the greatest ex-
pected improvement.

The optimal combination of building components is
found in an iterative fashion, as outlined in Algorithm 2.
After fitting the surrogate model to the observations ob-
tained at the initial design X, the optimization stage finds
the new design point x⇤ that maximizes the expected im-
provement across all slices. EnergyPlus then evaluates the
model at the new design point and the new response Y (x⇤)
is added to the data set. The surrogate model is refit to
the augmented data, and the steps of optimization, model
simulation and surrogate model rebuild are iterated until
one of several stopping criteria is met. If the expected im-
provement of a new variable combination is (a) less than a
small fraction ta (for our application, we chose 1%) of the
current minimum EUI or (b) smaller than a pre-defined
meaningful threshold tb (we chose 0.05), we terminate the
search. For practical reasons and limitations on total com-
putation time of the entire search, the search may also be
stopped if it has not resulted in any actual improvement of
EUI in a given number of simulations, or has exceeded an
acceptable number of iterations.

Algorithm 2
Y = EUI(X);
StoppingCriterion := FALSE;
while StoppingCriterion = FALSE do

fit surrogate model Y |X,Y;
for k = 1 to K do

x⇤k := argmaxx2X (k) E
⇥
I(x)

⇤
;

end for
x⇤ := argmaxx2{x⇤1,...,x⇤K} E

⇥
I(x)

⇤
;

if E
⇥
I(x)

⇤
< ymin · ta or E

⇥
I(x⇤)

⇤
< tb then

StoppingCriterion := TRUE;
else

y⇤ = EUI(x⇤);
X = X(x⇤); Y = (Y,y⇤)0;

end if
end while

RESULTS SUMMARY
The algorithm described in the previous sections runs

in R (R i386 2.15.1) and EnergyPlus (7.1.0) on a Win-
dows 7 machine with Intel Core 2 Duo CPU @ 2.40GHz
processor. With such configuration, the simulation of the
Building 661 model takes 9 minutes. To start, 100 initial
design points were generated, and after 95 iterations, the
algorithm reached convergence criterion as expected im-
provement is less than 0.05, as is shown in Fig.4. There-
fore, in total 195 iterations were needed for our approach
to reach convergence, which is far less than the typical

iteration number of 300 to 500 (Wetter and Wright 2004).
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Figure 4: The maximum expected improvement over iter-
ations.

To show the performance of our algorithm in finding
the minimum, we first define a benchmark value, which
is computed as following: for each variable xi, we used
the median value, denoted as xb

i , to form the input value
set for EnergyPlus to compute the EUI. And the result-
ing EUI value is used as the benchmark value, which is
EUI(xb) = 224.29. The cost function value found by our
optimal algorithm is EUI(xm) = 151.12, which is a 32.6%
reduction in cost function from the benchmark value. The
input variables xm, where the minimum was found, are
shown in Table 2.

Table 2: The variable space for optimal building envelope
design, and the ranges of the variables.

Variable xi Variable Description Value at
minimum

Wall insulation:
x1 Thickness (m) 0.40
x2 R Value (K ·m2/W ) 0.90

Roof insulation:
x3 Thickness (m) 0.34
x4 R Value (K ·m2/W ) 0.72

x5 Infiltration: (m3/s ·m2) 0.00044

Glazing:
x6 Thickness (mm) 13.48
x7 Solar transmittance(%) 0.28
x8 Front solar reflectance (%) 0.56
x9 Back solar reflectance (%) 0.07
x10 Visible transmittance (%) 0.49
x11 Front visible reflectance (%) 0.27
x12 Back visible reflectance (%) 0.31
x13 Front infra-red hemispherical emissivity

(%)
0.89

x14 Back infra-red hemispherical emissivity
(%)

0.14

x15 Conductivity (W/m · k) 0.98

Furthermore, we also formulated the same problem us-

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2589 -



ing the Genetic Algorithm (GA) in Matlab, MATLAB
(2012). And the parameters used in the GA are as fol-
lows: we used a population size of 20, a maximum of 50
generations, and a probability for recombination of 0.5.
Several attempts were tried, and GA does not come to a
converged stage.

CONCLUSION
This paper presents an efficient and effective method

for solving optimization problems in the field of building
design, which often depends on computationally expen-
sive simulations of various types. The presented method
consists of three parts: an initial design of experiment,
the construction of a statistical surrogate model, and a
sequential design approach for the search of an optimal
solution. The method was applied to find the optimal
combination of building envelopes that minimize energy
consumption under the Philadelphia climate context for a
two-story building. Results show that the method is ef-
ficient in the sense that it requires fewer evaluations of
the building model than are commonly necessary. For the
demonstration problem setting with a combination of 15
continuous and categorical variables, the method finds the
optimal solution with expected improvement of 0.05 EUI
within 195 iterations.
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