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ABSTRACT

Alternative products such as green materials are
either back or newly implemented in the construction
field. The low environmental impact of hemp
concrete and its thermo-hydric behaviour show the
possibilities of healthier construction and let obtain a
better comfort of users. In contrast with usual
concrete, the hemp concrete has huge hygroscopic
buffer capacity.

The aim of this work is to study the hempcrete with
prompt natural cement, which is a concrete block
made of a mixture of hemp shivs and “Prompt natural
cement”. For that, its behaviour in energy
consumption and comfort at a wall and building size
level are analysed thanks to simulation and
experimental measurements, which are conducted in
parallel.

Experimental tests have been run at wall scale in two
PASSYS test facilities. Test walls are subject to
weather solicitations outside and hydrothermal
regulation inside. For numerical study, a 2D coupled
heat and moisture transport model is defined.
Numerical analysis gives results in the same trends as
experimental data.

INTRODUCTION

High environmental quality buildings are nowadays
required and some alternative products such as green
materials are either back or newly implemented in
the construction field. Since 1986, hemp concrete
came back on the construction area in France. Its low
environmental impact and its thermo-hydric
properties  still mostly unknown show the
possibilities of healthier construction and let obtain a
better comfort of users. In contrast with usual
concrete, the hemp concrete has huge hygroscopic
buffer capacity and hemp gives to it a porous
structure more complete with several pore sizes,
which increase the hydrothermal exchange with
building inside. Most of the time, hemp concrete
(hempcrete) is a mixture of lime and shiv, the non-
fibered part of hemp. In this work, a prompt natural
cement binder is used.

The aim of this work is to understand the behaviour
of the hempcrete in energy consumption and comfort
at a construction size level. For this, both simulation

and  experimental measurements are done
simultaneously. The paper is divided into four parts.
First, a state of the art will be given, and then two
parts will discuss the experimental setup and the

numerical  study. A  comparison  between
experimental data and numerical results is presented.
STATE OF THE ART

Since the eighties different research have been done
on the hemp concrete. The research programs mainly
focus on three different scales: Material, Wall and
Building, to better characterize its physical (mainly
thermo-hydric) properties, to be able to predict its
behaviour in real conditions and to highlight its pros
and cons compared to other materials.

For this material, one finds mostly experimental
studies on the matrix and material properties. (Cérezo
(2005), Magniont (2010), Glouannec et al. (2011)).
The objectives are mainly to characterize the physical
properties of the material and quantify the impact of
hempcrete characteristics (density, relative humidity,
...) on the thermal properties (thermal conductivity, -
capacity and -diffusivity). For example the different
authors highlight that the variation of the thermal
conductivity can be double depending on the relative
humidity and that can increase of 50% depending on
the density.

At the wall scale, both experimental and numerical
analysis are run in parallel by different authors:
Holcroft et Rhydwen (2011) Gourlay et al. (2011)
Colinart et al. (2011), Ait et al. (2011). Experimental
studies are usually conducted in controled ambient
(temperature and relative humidity) test cells. Their
objectives are to understand the behaviour of
hempcrete under different conditions of temperature
and humidity. Thanks to these experiments they all
emphasized the impact of the moisture transfer on the
thermal behavior of the wall, sometimes due to phase
change inside the wall. Gourlay et al. (2011)
conclude that an optimal hempcrete porosity might
exist to be the best compromise between convective
transfer and phase change inside the material. These
experimental data have been analyzed and helped to
calibrate some numerical models. Ait et al (2012) put
in evidence the importance of taking into account the
hysteresis phenomenon of the sorption curve and of
the initial water content gradient in the hempcrete.
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At building scale, numerical and experimental
analysis are done separately. [GRE (2005) follow
energy consumption and thermal comfort of some
real hemp concrete buildings behavior thanks to light
monitoring. Yates (2002) records that with the same
energy production in two different houses, the
temperature is 1°C higher in the hempcrete house in
comparison of a brick house. Maalouf et al. (2011)
describe the behavior of a hempcrete cell for both
winter and hot summer conditions with a detailed
heat and mass transfer code, developed in SPARK
environment. The hempcrete is compared to
traditional construction materials such as brick and
concrete. The hempcrete mitigate more the exterior
temperature amplitude than the others.

The work presented here allows going further than
these works in two points. First it allows to
characterize hempcrete with natural cement instead
of lime and then to test hempcrete at a wall scale
under real weather conditions as we will describe it
in the following paragraph.

EXPERIMENTAL APPROACH

Experimental campaign Description
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Figure 1 : Passys cells with hempcrete walls

In the experimental study, two PASSYS test cells are
used as shown in Figure 1. They are parallelepiped
test cells of around 30 m® volume each. For each cell,
one test wall is built with the studied material while
the five other walls are highly insulated (40 cm of
polystyrene) and are non-tested walls (Figure 2).The
two test cells are next to each other. Tested walls are
south oriented and are subject to weather solicitations
outside and hydrothermal regulation inside.

Diagram of the Paslink Test Cell

Figure 2 : Passys test cell structure

The tested wall compositions are the same with few
differences in physical properties. They are

composed of prefabricated hempcrete blocks with
structural concrete beams (of 15 cm size) as
illustrated in Figure 3. This structure allows the
simultaneous analysis of two different parts of the
same structure, one with a concrete beam and one
only with hempcrete. The wall is then finished with
plasters on both sides.

Insulation

Inside Plaster

High insulated
~ Side walls

— Concrete Beam

L -Hempcrete prefab
blocks

~  Facade Plaster

Figure 3 : Wall structure view

Indoor conditions scenarios

Indoor temperature is controlled by an air
conditioning unit and moisture can be generate by an
ultrasonic humidity generator which is linked to a
recording system to save the generated water weight.
Air change is possible in the system but in order to
reduce this impact, the system was turned off during
measurements. These systems enable to impose
scenarios to test physical phenomena. On the first 5
scenarios, the relative humidity in both cells has been
let in free evolution. Figure 4 shows the evolution of
temperature through these 5 scenarios.

Scenarios carried out in cells3 & 4

Free evolution
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Figure 4 : Temperature evolution in scenarios

These evolutions have been chosen according to the
need of the numerical analysis.

Monitoring system
Sensor mapping

More than one hundred sensors are set to record the
wall and cell behaviour as illustrated in Figure 5. The
instrumentation enables to collect temperature,
relative humidity, heat flux data from the wall and
the test room, consumptions of HVAC systems.
Weather conditions are recorded for the whole
experimental site.
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Figure 7 : Relative humidity evolution
at the middle of different hempcrete blocks.

Figure 5 : Sensors mapping

L Beam concrete inﬂuence
Sensors validation
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front of the concrete beam is twice the one in front of
the full hempcrete blocks. The impact of the concrete
beam on the moisture transfer still needs to be
investigated.

Heat flux on internal coating face - PASSYS 3 & 4
(Hempcrete blocks zone D4b, concrete beam zone D2b)
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Scenario 3 for simulation

We now concentrate on scenario number 3, which
was run from November the 7" for 50 days. This will
be the one used to compare the numerical model with
the experiments. On the 7™ of November, the internal
conditions were changed from a free temperature
(which vary between 15 and 20°C the days before) to
a steady temperature of 28°C. It implies an evolution
on the relative humidity, which is left free inside the
cells from 80-90% to 25-35%. If we look at two
horizontal gradients, the concrete beam zone and the
hempcrete blocks zone, a decrease of the relative
humidity at the middle of the block and at the
interface between the interior coating and the block is
observed as shown on Figure 9. These results will
help to calibrate the numerical models.
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Figure 9 : Horizontal gradient for scenario Tint =
28°C

NUMERICAL APPROACH

Numerical model description

In parallel to the experimental campaign presented in
the last paragraph, numerical simulations are set up
to go further in the hempcrete characterization and
try to generalize the conclusion to other
configurations. In a first step, a 2D model in
COMSOL 4.3a is defined to take into account
thermal and hydric coupled transfer.

The geometry considered is a 2D horizontal cut of
the presented hempcrete wall. At this stage, the
model includes only the hempcrete blocks and the
concrete beam without the interior and exterior
plasters (yellow dash line in Figure 10)
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Numerical model results UHPDUN LV WKDW WKH SXUH KHDW PRI
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