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AUTOMATED TRANSLATION AND THERMAL ZONING OF DIGITAL
BUILDING MODELS FOR ENERGY ANALYSIS
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METHOD OVERVIEW

The method presented in this paper converts a
surface-based CAD model to a simulation-ready
BEM in five steps (Figure 2). In step 1, data from a
file or input stream are interpreted as geometric
surfaces with associated materials. In step 2, pairs of
type 2a surfaces defining heat-transfer objects of
various thicknesses are identified. In step 3, unpaired
surfaces are categorized as ecither heat-transfer
surfaces in contact with the outside or ground, thin
intrazone or interzone heat-transfer objects, or type
2b space boundaries. In step 4, space boundary
definitions are developed by searching a view factor
graph for connected components. Optionally, in step
5, user-specified input parameters from previous
simulations are applied to spaces in the new model,
and adjacent spaces may be aggregated into a smaller
number of thermal zones.
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Figure 2 Flow chart of translation steps, with pre-
processing steps for ray casting shown in grey

Modelling Styles

Steps 2 through 4 make use of neighbourhood-level
heuristics that tolerate a number of modelling styles
and several common modelling errors. Heat-transfer
objects such as walls and slabs may be modelled
thick, with an offset between inside and outside
surfaces, or thin, with single or coplanar surfaces.
Where solids or B-reps exist within the model, they
may represent either physical objects or spaces.
These distinctions produce four modelling styles
(Figure 3a). Because neighbourhood-level heuristics
operate on surfaces, models may also contain
composites of multiple styles (Figure 3b).
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Figure 3 Surfaced-based building models are
classified into four styles (a) and composites (b)

While it is desirable to allow as much variation in
modelling styles as possible, any CAD program
capable of producing models that do not represent
buildings can also produce building models for which
automated interpretation fails. Hence, the architect
must adhere to certain modelling protocols when
using automated translation. The method presented
here imposes the following constraints:

e For heat-transfer objects modelled with two
faces, the faces must be parallel and
separated by no more than a user-specified
maximum thickness #,,,,.

e Surfaces must be planar or decomposed into
planar faces.

e Heat-transfer sub-surfaces must overlap their
parent heat-transfer surfaces.

e Spaces must be enclosed by heat-transfer
surfaces with minimal gaps.

e Detached shading surfaces must be labelled
as such, for instance, by being placed on a
separate CAD layer.
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This method focusses on the automated translation of
geometric data for BES. While it detects the space
boundaries needed by thermal zones, it does not
address schedules, HVAC systems, or other
algorithm settings required for BES. Instead, it is
assumed that default settings can be applied to each
thermal zone created by the automated process, and
afterwards the user can edit these settings. The fifth
step in the process allows custom settings from
previous translations of a CAD model to be reused.

View Factors

The fraction of radiant energy exiting one surface
that directly reaches another surface is referred to as
the view factor from the first surface to the second
(Pellegrini, 1997). View factors are required for
radiant heat exchange calculations within thermal
zones, but more broadly, they describe a spatial
relationship between surfaces. The presence of a
view factor between the backs of two surfaces
intuitively indicates that these surfaces belong to the
same space. Because the same visual relationship
allows human modellers to associate groups of
surfaces with a space, view factors are more useful
for interpreting “messy” CAD models than are edge
graphs or semantic object hierarchies that depend on
the consistency and completeness of CAD data.

Analytical calculation of view factors is possible, but
this is computationally expensive for all but simple
geometries and requires modification to account for
occlusion (Schroder and Hanrahan, 1993). While
EnergyPlus allows manual entry of view factors, the
program itself is only able to calculate an area-
weighted approximation of view factors for convex
zones (EnergyPlus Development Team, 2013).

Alternatively, view factors may be calculated through
geometric analogy. The view factor f;, .,z from a
differential element d4 of a sending surface S to a
receiving surface R is found by projecting R onto a
unit hemisphere around d4, and then projecting the
hemisphere onto the plane of d4 (Figure 4a). Then
fas—r 1s the portion of the resulting circle occupied by
the projection of R (Nusselt, 1928). Integrating over
S produces an overall view factor fs ,z in the range
from zero (invisible) to one (filling the field of view).

Figure 4 Nusselt analogue view factor calculation (a)
and approximation by the Monte Carlo method (b)

A good approximation is produced by selecting
points on S and casting a ray from each point (Figure

4b). Then fs_.p is the fraction of rays whose first
intersection is with R (Howell, 1998). Points and ray
directions are chosen using a four-dimensional quasi-
random sequence to guarantee independence,
uniform distribution, and low noise (Pellegrini, 1997;
Sobol, 1976). Increasing the number of rays increases
the accuracy of the view factor calculation. In tests,
casting 512 rays provided accuracy to three decimal
places, which is sufficient for the algorithms
described here. Because ray casting can occur in
parallel, view factors can be calculated very quickly
on multi-core processors.

STEP 1: PRE-PROCESSING

When the automated translation process is initiated,
the first step is to read a file or stream from the CAD
program to obtain surfaces. The data transferred for
each polygon in the CAD model must at minimum
include Cartesian coordinates of geometric vertices, a
material assignment, and a CAD layer name. The
layer name identifies external shading and terrain
geometry, which are ignored in the remaining steps.
Material assignment will later provide BES with
thermal properties of surfaces but is immediately
useful to differentiate heat-transfer sub-surfaces,
which have glazing or door materials, from other
heat-transfer surfaces.

At this point, it is useful to collapse, or weld, vertices
within a small distance of each other. This helps to
eliminate rounding error caused by geometric
transformations of floating point coordinates.

STEP 2: BOUNDARY SURFACE PAIRS

The next step is to identify relationships between
surfaces. Each surface may enter into two types of
relationships with other surfaces in a BEM. First,
each surface may have a single boundary surface,
which represents the opposite side of its heat-transfer
object. The boundary surface may be coplanar, as in
centreline wall models, or it may be parallel with an
offset representing the thickness of the heat-transfer
object. It may also be missing from the model
entirely if an object is modelled as a single surface.
Outside faces of building envelope components are
generally omitted from the BEM; EnergyPlus version
8.0 has no exterior surface object, for instance. If
surfaces for both sides of an object are present, they
may not be congruent or of equal area, which is
necessary for one-dimension heat transfer. Second,
each sub-surface overlaps a parent surface. A parent
surface may have multiple children or none, but a
sub-surface has only one parent, and its boundary
surface is a child of its parent’s boundary surface.

Boundary and parent surfaces are found through ray
casting. Random points are chosen on the surface of
interest, and a ray normal to the surface is passed
through each point, starting a distance z,,,, to one side
of the surface and extending #,,, to the other side. A
list of parallel surfaces intersected by the rays is
generated, and the closest surface of the same type
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(surface or sub-surface) is chosen (Figure 5). To test
that the two surfaces are compatible for one-
dimensional heat transfer, one surface is projected
onto the other along their normal direction, and they
are checked for complete overlap. If the overlap is
incomplete, a polygon Boolean operation is
performed (Vatti, 1992), and the resulting polygons
are projected back to their original planes (Figure 6).
Otherwise, the two surfaces become each other’s
boundary surfaces, and their normal directions are
oriented to face each other.

YLIXUH
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DQG SDUHQW{V ERXQGDU\ vXU Dg&0l and
VXUIDFH ( LV LJQRUHG

YJLIXUH
VXUIDFHV RI
JHRPHWU\ E

D PHVV\ PRGHO

For a heat-transfer sub-surface, the closest heat-
transfer surface is also chosen as the candidate parent
surface. If both the sub-surface and its boundary sub-
surface are closer to one parent surface than to its
boundary surface, each sub-surface is assigned a
different parent surface so as to minimize the sum of
distances between sub-surfaces and their parents. If
two potential parent surfaces are present but no
boundary sub-surface is found, a new boundary sub-
surface is created on the plane of the more distant
parent surface. Sub-surface normal directions are
oriented to match those of their parents.

At the end of this step, all boundary surface pairs that
existed in the original model have been identified and
corrected for normal orientation. However, in cases
where a heat-transfer object was modelled as a single
surface, including heat-transfer surfaces that form the
building envelope, no boundary has been found, and
the normal direction remains undetermined. Also,
any coincident pairs of end-wall surfaces are
incorrectly identified as boundary surface pairs.
These issues are resolved in the next step.

SURMHFWLRQ DQG %R

STEP 3: NORMALS

The next step is to correct surface normal directions.
BES tools such as EnergyPlus require that all heat
transfer surfaces and sub-surfaces have normal
directions pointing out of the space they bound. For
surfaces that are not in boundary pairs, the normal
direction must be determined according to spatial
relationships with other surfaces in the model. This is
accomplished through view factor analysis.

For the purpose of this step, the view factor
calculation is modified in two respects. First, rays
that hit the back of a surface with a known normal
direction do not contribute to the view factor
calculations. Second, rays that have no intersection
with any surface contribute to the view factor to a
hypothetical null surface. A minimum view factor Ip o
filters false positives, where small numbers of rays
pass through gaps between polygons and incorrectly
indicate non-zero view factors. Gaps between
polygons arise either from numerical error in floating
point intersection calculations or from the user’s
failure to create watertight space enclosures in the
CAD model. A second minimum value ILQﬁhosen

$ UD\ RULJLQDWLQJ Iu¥ebthetchgd owk dliespsyyfages that touch in

-walband wall slab 1ntersect10ns In tests, setting

ZDE}P results, but
these parameters may need to be tune

for different
CAD programs or modelling styles.

For each surface 6that has a boundary surface, the
normal direction is known, and view factors are
calculated only for the back face. If there exist two
parallel, non-coplanar surfaces $and %such that $
and %are a boundary surface pair and ls.3> lp and

angl E‘ [l)f @g‘g‘sﬁf & part 4 l’dpﬁré boundary,

sur ce lS unassr ne ure 73)

or each surface 6that lacks a boundary surface,
view factors are calculated for both the front and
back faces, and four conditions are tested in order:

1. If there exists a pair of parallel, non-coplanar
surfaces $ and %such that $is the boundary
surface of %and ls.s> lb and lg.o> lp,dhen 6
is a type 2b space boundary (Figure 7b). The
normal direction of 6is oriented toward $and %

2. If there exists a surface $such that ls.5> | qpd
$has a non-coplanar boundary surface, then 6is
a type 2b space boundary (Figure 7c¢). The
normal direction of 6is oriented toward $

3. If l.ox&0luLothen 6is part of the building
envelope. In most BES programs, there is no
need to create a boundary surface for 6 The
normal direction of 6 is oriented toward the
exterior.

4. If there exists a surface A such that lg.g > 0 and
Is.6 > 0 and ls.qox &0 lp,ghen 6is part of the
building envelope, even though it does not have
a direct view to the exterior. The normal
direction of 6is oriented toward $&
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6XUIDFHV EHORQJ WR WKH VDPHJN/%W#W %’K%%WWR HEDWWhY DUH PDGH
EHWZHHQ WKHP WKDW GRHV QRW E Fb% LRV X U VFKH
,Q JUDSK WKHRUHWLF \WRAUFRW H%lli W ¥ PB\?"b RIWHQ QHHG WR EH
FRPSRQHOI RI WKH YLHZ JUDSK RI KExROELRRGCERHY ﬁZHYHU WKHUH LV
QRGHV LQ WKH YLHZ JUDSK FRUL\! ng‘béﬂ; ®H \Q)WJHBFQ\]/ bQHEUPDWLRQ
HGJHV LQGLFDWH YLHZ IDFWRUVEWWAHRGEWAQ PYELDQWYV UH SUHVHU
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UHTXLUH ERXQGDU\ VXUIDFHV W%\MH GDHWWHHL\J‘
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feature recognition approaches that identify similarity
between model components, may allow thermal zone
properties to be inherited through spatial translation
or rotation of the model.

A second task that may be automated is reduction of
the number of thermal zones in a model by grouping
spaces. In a sufficiently developed design, spaces
may be grouped manually according to the
mechanical zoning of the building. Earlier in the
design process, the building may be divided
recursively along boundaries of least thermal
coupling until the desired number of thermal zones is
achieved (Dobbs and Hencey, 2012). If a full
simulation has been run, the building may also be
zoned by analysing dynamic temperature modes
(Georgescu et al., 2012).

VALIDATION

This method has been tested on models produced
with several modelling styles in SketchUp (Trimble,
2013). SketchUp was chosen as a CAD program
because of its extreme ease of use and simple generic
data structure accessible through an application
programming interface (API). While SketchUp lacks
many features of more robust CAD and BIM tools,
the geometric data available from SketchUp through
its API can also be obtained from virtually all other
CAD programs, so these tests have no dependence on
proprietary tools or data structures.

In The New York Times Building example (Figure
9), the original SketchUp model contains 1844
unzoned faces, in addition to 1,193,569 faces labelled
as shading surfaces. Automated translation correctly
identifies 273 enclosed spaces in the model, and
creates 500 additional surfaces as a result of polygon
Boolean operations and missing boundary surfaces.

Figure 9 The New York Times Building unzoned
CAD model (a) and zoned BEM (b)

CONCLUSION

In order for BES to become a core component of the
architectural design process, simulation-ready BEMs

must be quickly producible at any time. This paper
has detailed a fully automated approach to generating
a BEM from a CAD model, even when the CAD
model contains certain topological errors and stylistic
inconsistencies. The method uses view factors
between surfaces to identify spaces and is able to
correct surface normal directions and create missing
boundary surfaces.

While this method for automated translation of CAD
models allows immediate simulation of numerous
models that previously would have required tedious
manual alteration, many modelling styles and
common modelling errors remain to be addressed.
Further work could make translation tools more
broadly applicable and, consequently, make
modelling for BES more intuitive. Some specific
areas for future work in automation include:
differentiation between heat transfer surfaces and
shading surfaces, differentiation of above- and
below-grade surfaces based on topographic data,
division of surfaces at out-of-plane intersections,
capping of holes in incompletely enclosed spaces,
including doorways that are modelled as openings,
interpretation of windows and curtain walls modelled
with detailed frame and mullion geometry, and
assignment of material constructions in cases where
materials are absent or inconsistent in the CAD
model.

It is hoped that the algorithms presented here will
lead to further effort to translate increasingly
“messy” CAD models. Additional work could allow
non-expert users to quickly produce accurate BES
results early and often as a design aid. This is in
keeping with the greater goal to encourage accurate
thermal analysis of buildings early in the design
process when there are more opportunities to
positively affect building performance.
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