
INTERFACING BUILDING PERFORMANCE SIMULATION WITH CONTROL
MODELING USING INTERNET SOCKETS

Azzedine Yahiaoui*1, Jan Hensen1, Luc Soethout2, Dolf van Paassen3

1Center for Building & Systems TNO-TU/e
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2TNO Built Environment and Geosciences
Postbus 49, 2600 AA Delft, The Netherlands

3TU Delft, Department of Mechanical Engineering
Mekelweg 2, 2628 CD Delft, The Netherlands

ABSTRACT

This paper reports on progress of an ongoing
research project, which aims to achieve better control
modeling in building performance simulation by
integrating distributed computer programs. Recent
developments show that there is a need to enhance
building performance assessments by integrating new
simulation features in order to predict the overall
effect of innovative control strategies for integrated
building systems. However, both domain
independent control modeling environments and
domain specific building performance simulation,
have their own restrictions. For example, certain
control features are represented in one simulation
environment while others are only available in other
simulation software. To alleviate these practical
problems, this paper describes a mechanism that can
be used to allow a building simulation environment
to exchange data with an external control simulation
environment.

* Corresponding e-mail: a.yahiaoui@bwk.tue.nl

In particular, this paper focuses on the problem of
developing run-time coupling of control and building
performance environments over TCP/IP using
Internet sockets. The socket implementation is
analyzed in terms of minimizing overhead,
communication efficiency, and the integration into
existing software tools. Perspectives for a run-time
coupling specification are given to enable
connection-oriented sockets to easily exchange data
as well as coupling software. Data requirements in
view of integration in real building control protocols
(BACnet and LonWorks) are discussed. An early
implementation of run-time coupling is demonstrated
with a case-study, and the paper finishes with some
conclusions and directions for future work.

INTRODUCTION
With the rapid advances in microelectronics,
powerful computer-based building monitoring and
control systems have emerged. These Building
Automation Systems (BAS) or Building (Energy)
Management Systems (BEMS) control systems such

as for heating, ventilation and air-conditioning
(HVAC) and lighting. They also perform tasks such
as access control, energy management, and fault
detection and diagnoses. The principal setup of a
BEMS as depicted in Figure 1 is to provide a healthy,
comfortable and productive indoor environment
while reducing fossil fuel consumption and green
house gas emissions, and to achieve this in an
efficient and rational way (see e.g. IEA 2002).

Central computer

Netwerk

Substation
(computer)

+

-

Substation

Figure1 General architecture of a building energy

management system

As mentioned by e.g. Van Paassen (1986), a
computer based control system is much more flexible
than traditional control systems. The software allows
adapting the control strategy to changing conditions.
The central computer defines which control loops are
suitable to be activated and what would be the
appropriate set-points for the current situation. This
computer is connected to substations via a network.
Substations constitute the automation level that
collects message (data) and regulates actuators. For
communication, a protocol is used to exchange those
data between the central computer and the system
components. Usually, a message includes the address
of the component and the series that refer to the real
physical quantity (e.g. the desired position of valve).

It is very important that the advanced control
strategies that are possible with BEMS are taken into
account already during the design phase of the
building and its installation. This requires that such

Ninth International IBPSA Conference
Montréal, Canada

August 15-18, 2005

- 1377 -

strategies are properly modeled and incorporated in
building performance simulation. However, existing
domain specific software for building performance
simulation (BPS) is usually relatively basic in terms
of control modeling and simulation capabilities (e.g.
ESP-r, TRNSYS). On the other hand, we now have
domain independent control modeling environments
(CME), which are very advanced in control modeling
and simulation features, but rather limited in building
performance simulation concepts (e.g. Matlab/
Simulink). Marrying the two approaches by run-time
coupling would potentially enable integrated
performance assessment by predicting the overall
effect of innovative control strategies for integrated
building systems.

Although, our current work starts from specific BPS
and CME simulation environments, the
communication mechanism and data-exchange
protocol that is being developed and implemented,
have much wider and more general applicability.
ESP-r and Matlab / Simulink were selected as BPS
and CME software tools respectively. ESP-r and
Matlab/Simuling can run on different operating
system platforms. ESP-r is used for building
modeling only and Matlab/Simulink is considered as
a controller that can be configured remotely. It is felt
that this type of technology development will enable
design and evaluation of advanced building control
applications that are currently infeasible.

Figure 2 Networked building simulation and

automatic control systems

For the coupling between the different simulation
environments, we want to mimic as much as possible
the situation of a real BEMS. As schematically
shown in Figure 2, overall system integration is in
our approach achieved by connecting the various
hardware and software subsystems to a network,
such as the Internet or a local area network (LAN).
In order that the subsystems can communicate
information, it is necessary to use a common data
exchange format such as the eXtensible Markup

Language (XML; see e.g. Chervet 2004). Nowadays
XML might even be used as a gateway between
different communication protocols such as LonMark,
BACnet and Modbus, all of which are used in
BEMS. Communication protocols that are used by
BEMS have come up with a structure to describe the
information that is sent across the network. The same
kind of information needs to be exchanged in our
distributed simulation environments where building
modeling and control system are separated and work
together through run-time coupling. This motivates
our choice to use internet techniques based on socket
communication for the run-time coupling between
simulation environments

The remainder of this paper is organized as follows:
the next section describes the background of run-
time coupling. Then it follows the reasoning behind
using Internet sockets in the implementation. This is
followed by case study demonstration, and finally
conclusions and directions for future work.

BACKGROUND
Coupling different applications (simulation
executables) at run-time provides the facility to
exchange the information in a co-operative way.
Usually, one application controls the overall
simulation procedure and requests the other
application (s) when necessary. For example, Janak
(1997) has enabled run-time coupling between ESP-r
and the ray-tracing lighting simulation and
visualization software Radiance.

In principle, the coupling of tools requires an
underlying communication mechanism to allow the
transfer of both data and control between codes. The
data transfer corresponds to the sending of the results
calculated by one of the processes and to the
receiving by another process whereas the transfer of
control is the execution of one particular function to
be performed remotely in another process. Most of
the attempts to run-time couple codes rely on the use
of shared (or intermediate) files, which is not a very
efficient way to exchange data at an adequate level of
abstraction (Hughes and Hughes 2003, Ranganathan
et al. 1996). In (Yahiaoui et al. 2003), we described
and compared also various other options for inter-
application data transfer facilities.

Inter-process communication (IPC) can be viewed at
different levels of abstraction. At a higher level, it
appears as an exchange of information between
processes. These processes are either contained in a
single parallel application or in distributed
applications, or may otherwise belong to different
applications that need to communicate. At a lower
level, communication appears as the mere traffic of
bits from one address space to another. Distributed
simulation requires support for expressing
communication at high-level of abstraction. A

- 1378 -

powerful abstraction in distributed applications is the
IPC mechanism that deals with distributed object
systems, such as CORBA (Common Object Request
Broker Architecture), in which computer
applications, written in any oriented-object
programming language, can work together over the
network. However, as reported earlier (Yahiaoui et
al. 2004), adapting CORBA to explicitly run-time
couple ESP-r with Matlab (neither of which are
written in an object-oriented language) raises major
difficulties in dealing with the CORBA interface
definition language (IDL).

In contrast, socket programming is complicated, but
we can build more sophisticated communication
abstractions on top of sockets (e.g. Stevens 1999).
Socket communication has been used earlier for
evaluation of HVAC control performance (e.g.
ASHREA 1997). In addition, a socket domain is an
abstraction that provides addressing structure and a
set of protocols such as: Internet Protocol, BacNet,
LonTalk, and so on. For such reasons, the use of
internet sockets seems a good alternative for
developing and implementing a coherent paradigm
for communication between BPS and CME software.

DEVELOPING RUN-TIME COUPLING
FOR SIMULATIONS
The initial objective of the current research is to
marry the ESP-r and Matlab environments in order to
be able to perform distributed building control
simulations. This involved identifying the specific
components that should be connected in order to
communicate data between ESP-r and Matlab, which,
coincidentally, may run on different machines using
different operating systems. That is to say that in the
run-time coupling approach, applications can be
distributed over heterogeneous environments. In this
regard, socket based IPC has been developed with a
set of techniques that permit communication over the
network as shown in Figure 3.

Figure 3 Networked communication between ESP-r

 and Matlab using sockets

Sockets are abstract communication endpoints. They
are basic components of inter-process and inter-
system communicating over a network. A socket is

made up of an IP-address concatenated with a port
number. In general, sockets use a client-server
architecture. The server waits for incoming client
request by listening to a specified port. Once a
request is received, the server accepts a connection
from the client socket to complete the connection. In
our case, ESP-r is the client/master and
Matlab/simulink is the server/slave. Hence,
Matlab/simulink can be launched at every ESP-r
time-step as a separate process.

IPC USING INTERNET SOCKETS

While run-time coupling involves many aspects, the
current paper focuses on programming network
communication. Internet domain communication
which uses the TCP/IP (Transmission Control
Protocol/Internet Protocol) suite is the most prevalent
set of communications protocols in use today.
TCP/IP provides communication services that are
interoperable with virtually any network
configuration, allowing the internet sockets to act as
the basic element of the network.

UDP vs. TCP protocol

Socket types define the communication proprieties
visible to the application. Indeed, the term TCP/IP
refers to more than just the TCP protocol itself. It
specifies an entire that bridges communications
between the transport layer and the upper (session/
presentation/ application) layers through a network
medium. Within the TCP/IP suite, two protocols are
mainly used: TCP (Transmission Control Protocol)
and UDP (User Datagram Protocol). Both of them
have their own advantages and disadvantages. Each
of them can be better for a particular problem related
to run-time integration of BPS and CME software.
What follows is a short description:

1. TCP is the most prevalent of internet domain
communication. It supports connection-oriented
communication between client (e.g. ESP-r) and
server (e.g. Matlab/ Simulink). Before any data is
transmitted, TCP establishes a mutually
acknowledged connection between the sending
components and the receiving components (or
nodes). During communication, this connection is
maintained through the transmission of data by
one component followed by an acknowledgement
(ACK) of receiving data at the other node. If the
sender of data does not receive this ACK, the
data in question will be retransmitted. Finally
when all data has been transmitted, the
connection is closed. Although TCP offers the
advantage of reliability of transmissions (sent
data is guaranteed to be delivered), this feature
costs time in connection set-up and error
checking, especially during large transmitting
volumes. In essence, TCP may experience low

- 1379 -

performance due to significant overhead per
transmitted data segment.

2. UDP provides communication in connectionless
mode (no notion of connection). UDP
communication consists only of transmitting one
data packet with attached routing information.
UDP is not responsible for notification prior to
the transmission of data nor for confirmation of
data delivery. As a result, UDP offers no delivery
guarantees. This simplicity, however, offers
significant benefits in saving time for connection
set-up and error checking. Furthermore, since no
connection must be established, the components
of sending and receiving data can be made to run
promptly, regardless of whether they are
successfully completed. UDP is usually used to
efficiently exchange small datagrams (<64MB).
UDP allows applications to exchange data across
the network with a minimum of overhead.

In the development of run-time coupling between
ESP-r and Matlab over the network, more
particularly between controller and building model,
the time that it takes to send and receive small data
volumes might be the limiting factor on allowable
sampling interval. This can happen when a type of
controller, which uses or depends on dynamic
parameters, requires to instantaneously changing the
position of a specific building component. For speed
of network communications, the UDP protocol
would be a better choice than TCP. We envisage
using a building domain specific control protocol, i.e.
BACnet/IP (a data communication protocol for
Building Automation and Control Networks). The
BACnet protocol itself provides the guaranteed
delivery of data. This does not require the use of
TCP. Moreover, the added reliability of TCP may
seem to give an advantage over UDP, but this may
not necessarily be the case. Improved reliability in
TCP is achieved by the re-transmitting data feature
that guarantees delivery but also guarantees that the
re-transmitted data will arrive later than intended.
The delivery of this late data is not worth the
additional network bandwidth it requires, as closed–
loop would be better served by a new transmission of
recent data than by re-transmission old data. Indeed,
the timing of a run-time coupling mechanism
requires the ability to execute send and receive
functions with great precision. Summing up, UDP
seems to be the better choice for our type of
applications. Therefore an appropriate signal for
necessary error checking and possible repeated
function calls is implemented (i.e., select() function
is used).

Exchange data with UDP

At the top layer, application level communications
within the control loop are performed using functions

in sockets application programming interface (Sock
APIs). The underlying concept upon which those
functions are constructed is that of a socket, which
simply refers to the communication between ESP-r
and Matlab through the network.

The data exchanged with UDP represent the physical
quantities as they are measured in a real application.
However the data that should be exchanged from
ESP-r to Matlab and required passing back from
Matlab to ESP-r are first converted by flattening of
structured data items to external (network)
representation on one side, and then reconverted by
rebuilding data structures to internal representation
on other side. This exchange format has for the
purpose to transfer data in safe mode. The main
advantage of this approach is to enable run-time
coupling of the simulation environment with a real
building (e.g. for control purposes) or with building
components (e.g. HVAC systems).

DATA COMMUNICATION IN A REAL
BUILDING

In real operations, it is desirable for control loops to
communicate with building components or HVAC
systems. The communication between controllers and
building systems requires an interface or a gateway,
due to their different communication speeds and data
formatting. The proper operation of the gateway is
dependent on the continued use at the corporate level
to implement between controllers and building
systems. In consequence, two standard protocols
“BACnet” and “LonWorks” (see e.g. SmartHome
2000) may be distinguished:

Both protocols cover most or all layers of the OSI
(Open System Interconnection) model for network
communication. For applying some of the ideas
developed for these protocols in our case of run-time
coupling, only application layer is considered. The
other layers deal with hardware specifications and
the low-level details of the network communication.
In our case, these details are already covered by the
socket implementation. The application layer
however deals with the conceptual part, i.e. with the
way of information is modeled.

BACnet is a specification for a standard protocol
published by ASHRAE organization. The run-time
coupling mechanism is implemented in order to
create a communication protocol that complies with
this specification. The standard defines protocol
implementation conformance statements (PICS) that
identify different levels of compliance. This meets a
field level of Building Energy Management System
(BEMS) that run-time coupling between ESP-r and
Matlab uses to communicate over BACnet protocol.

To support communications on a variety of LANs or
to allow different components to co-exist in the same
network, LON (or LonWorks) that communicates via

- 1380 -

Standard Network Variable Types (SNVT) facilitates
interoperability by providing a well-defined
interface. Basically a proprietary communication
protocol is called LonTalk, created by ECHELON
Corporation. A chip is required for any device that
uses LON. Standard network variable formats can be
established by run-time coupling to allow the transfer
of data between Matlab and ESP-r using the
LonMark subset of LON capabilities to interoperate
with each other.

IPC TO ESP-R AND TO MATLAB/SIMULINK
BINDING

To use sockets IPC, C and C++ programming
languages are used of which socket libraries are
exploited. Neither building performance simulation
software (ESP-r) nor control modeling environments
(Matlab/Simulink) have simple interface with sockets
communication mechanism. Therefore we have
describes an approach, which is developed in usual
way of interfacing sockets communication
mechanism to ESP-r and Matlab/Simulink as well.

Interfacing to ESP-r

Currently ESP-r is the legacy of Fortran codes.
Mixed language programming is used to interface
between Fortran and C/C++ programs (e.g. Einarsson
1995). This is often a very appropriate way of
combining the strengths of various programming
languages, in which the language subset is common
between C and C++, and between Fortran 77 and 90.
The developed approach consists of using a method
that can be functional for both Unix and Linux
Operating Systems in which ESP-r can be installed.
This method is based on external structure function
(extern struct) in order to add new variables that need
to be exchanged without modifying programming
codes. With this function, a ESP-r subroutine can
exchange data with the C client code of sockets
communication mechanism through the function was
made. Afterward, the C client codes, which
developed and support sockets communication are
compiled within the concerned ESP-r packages. This
creates one executable, a client process which is
formed by combining ESP-r packages and sockets
communication codes together.

Interfacing to Matlab/Simulink

Matlab has a built-in utility called MEX (Matlab
Executable), which is used to convert C/C++ to
Matlab-Executable format. The original sense of the
Matlab/Simulink word represents two different
environments, which are a high-level programming
environment and a graphical user interface
respectively. The link to external programs depends
on which environment we would interface. For
Matlab, MEX-files are used and are dynamically
linked programs that can be called from within

Matlab as regular Matlab. In case we need to deal
with Simulink, the link should also be performed
between each other. Practically the same approach is
used for Simulink, although MEX S-functions are
used and are dynamically linked programs within
Simulink. Thus, when an application requires
computational control dynamics, it should call
Matlab code. For the use of Matlab / Simulink
interoperability; technically permutations flexible
usage model between Matlab, Simulink and C/C++
are described in table 1. More detail about can be
found in (MathWorks, 2005).

Table 1 Interoperability between MATLAB,
Simulink, and C/C++

FROM… CALL… HOW?
C/C++ Matlab MATLAB Engine

ActiveX/COM & DDE
MATLAB Compiler & runtime

Matlab Simulink Using sim function:
>> sim(‘mymodel’)

Simulink C/C++ S-function Builder
C-code S-function

C/C++ Simulink Engine or COM
[x,y,t] = sim(‘mymodel’,u0)

Simulink Matlab M-code S-function
Caution: interpreted, but not
compiled

Matlab C/C++ MEX
ActiveX/COM & DDE

Moreover, those external interface functions (MEX-
files and MEX S-functions) as described previously
can send and receive data to/from C program through
a gateway (or a bridge) that was made. This can be
done once we compile them with MEX utility. After
the compilation, it generates a DLL (Dynamic Link
Library) file for any operating system. With this
procedure, Matlab control files can be invoked when
the server receives data from a client process. A
server which is generated by compiling MEX-file
and sockets communication codes in a group is like a
DLL file which is used and recognized by Matlab.

RUN-TIME COUPLING OF BUILDING
CONTROL STRATEGY

In the current implemented approach of run-time
coupling between ESP-r and Matlab, it is ESP-r
which starts simulation. As Matlab is a server for
ESP-r (a client). If the connection is not established
between client and server the data to be exchanged
are not transferred.

The run-time coupling of ESP-r and Matlab strategy
developed in this work takes the form of a closed-
loop control system, as shown in figure 4. This can
performed either for the feedback control structure or
for the feedforward control structure. Both control
loops can be used for a simulation of building control

- 1381 -

systems. In case we would use open-loop control for
building application, it would just necessitate to
setting, in Matlab side the variables requires passing
back to ESP-r to zero, and more exactly as defined in
Matlab language are: the rhs (right hand side)
arguments. Finally, both unidirectional or
bidirectional communication are carried out within
this run-time coupling strategy.

 Figure 4 Structure of run-time coupling between

control and building performance simulation

A user-interface in ESP-r is modified by adding one
row of “External Control” at the end of the control
period window. This allows us to setup an external
controller for a specific period of day. Once the
simulation has been started, ESP-r alters data transfer
over a network to the involved controller in Matlab
by run-time coupling when necessary. Then if data
transfer requires passing back to ESP-r, the controller
invokes ESP-r when its processing in Matlab is
terminated. In this case, the implemented run-time
coupling of ESP-r and Matlab is supported with basis
data transfer protocols. The manner of data exchange
with Internet sockets depends on whether the
communication is synchronous or asynchronous. If
some building control applications requires running
in real-time, it is necessary that run-time coupling of
ESP-r with Matlab is in asynchronous mode.
Therefore the different communication events are
briefly described below.

Asynchronous Mode

This event occurs when the processing of ESP-r and
Matlab are independent from each other. Figure 5
shows the event when the time step of one of them
(either ESP-r or Matlab) is different from another.

Figure 5 Asynchronous mode

However, asynchronous (parallel) simulation of run-
time coupling between ESP-r and Matlab is
characterized in that they contain ‘no-blocking send’
and ‘no-blocking receive’ functions. Indeed within

socket communication, the use of some signals, like
for example SIGIO, allows the transmission of data
in asynchronous manner (e.g. Leffrer et al. 1993).
Although the asynchronous simulation of coupled
programs is able to deal with any updated
information, the execution time can be significantly
reduced (e.g Fumagalli et al. 1999). Therefore, the
controller is updated each time the events arrive from
building components, and verse versa. This step is
important in control systems when building
components are in the presence of delays or when
objects located in building change their actions
within the time. Consequently, asynchronous
simulation is efficient for an assessment of some
control analysis for integrated building systems. But
it is harder to parallelize, as the receiver does not
know when the transmitter is going to send data.

Synchronous Mode

This event occurs when the two processes (ESP-r and
Matlab) are synchronizing with the same defined
time in execution. Each process (either ESP-r or
Matlab) waits for incoming data from another
process. In this case, the time step is defined by the
client process (ESP-r). On the other hand, the server
process (Matlab/Simulink) is in charge of the same
time step defined for ESP-r. This is a usual and
simple way of run-time coupling when ESP-r and
Matlab exchange data at end of each time step, as
shown in figure 6.

Figure 6 Synchronous mode

Since a building control model is executed
sequentially, the transmission by synchronous mode
blocks the whole simulation until the
simulation/execution environment receives data. In
real-time simulation, some of scheduled transitions
may be delayed because of this blockings. As a
result, if the implemented run-time of ESP-r and
Matlab uses synchronous mode, it should be ensured
that the time constraints of scheduled transitions are
satisfied (adjusting a timing of a control loop).

BUILDING CONTROL APPLICATION
To demonstrate the application of the developed and
implemented run-time coupling between ESP-r and
Matlab, an application case is presented here. The
application comprises a working office space unit
(4.8*4.2*2 m3) with two radiant-ceilings used for
both heating and cooling mode. The on/off controller

- 1382 -

is used to regulate the appropriate temperature inside
the room by opening or closing the valves on
pipelines (either the pipeline of warm water or the
one of cold water). The constructions used in this
office space are internally insulated cavity walls and
internally single glazed walls. The office is located in
a six floor of the building sited around the atrium, as
shown in figure 8.

Figure 8 The Building model

The walls facing south and the atrium are in a single
glazed structure. It has a thermostat in which the user
is allowed to set a temperature at five degrees higher
or lower than the common set-point, which is
21degree-Celsius. This illustrated case-study
investigates an application that has two objectives.
The first consists of comparing the results of
(internal and external) controllers to the set-point
within the same time step of 10mn/hour. The second
is to qualify the importance of the run-time coupling
approach. Figure 9 compares the simulated results by
regulating a temperature in the office. The simulated
temperature results are obtained using internal
control, which refers to the On/Off controller
implemented and available in ESP-r, and external
control which refers to the On/Off controller

implemented in Matlab. The obtained results for
external control are within the use of implemented
run-time coupling between ESP-r and Matlab using
Internet sockets. This external controller is presented
when ESP-r and Matlab are executed in the same
host and when they are run in different hosts. In the
present application, the building model is carried- out
in ESP-r and the controller is set-up in Matlab. By
combining them by run-time coupling, the simulation
is performed in synchronous mode. Therefore,
Matlab is launched at every ESP-r time step as a
separate process. However, the obtained results for
internal control and external control are basically
similar during the working period (from 7:00 to
18:00 o’clock). An accurate comparison shows that
the simulation results are identical. The results also
show the oscillation of different responses of
controllers around the set-point in working period,
this is due to controller capability in which control
action takes place every time a deviation occurs from
set point. This action responds quickly but is
sensitive to input noise, which causes chattering at
short intervals.

The importance of run-time coupling between ESP-r
and Matlab is to incorporate advanced control
analysis methods in building performance simulation
for improving all quality aspects of an indoor
environment, and for enabling an integrated
approach to independent variables such as
temperature, light, solar penetration, … etc. Using
more than one host at a problem might enhance the
performance and the reliability of run-time coupling
when the time plays a critical part for the simulation
of advanced building control systems. The principal
result of such an approach will certainly enhance
building efficiency while maintaining optimum
energy consumption.

15

16

17

18

19

20

21

22

23

24

25

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

0:
00

Set-point Internal Control External Control External Control (diff. hosts)
Figure 8 Simulation results

It should be noted that it might be dangerous to use
the asynchronous communication for the current

application, as the output signal from the On/Off

- 1383 -

controller is either fully on or completely OFF
depending on the error deviated from a set point.

CONCLUSION AND PERSPECTIVES
The paper has described a promising approach to
run-time coupling between ESP-r and Matlab/
simulink as implemented using internet sockets. This
approach is based on the UDP protocol to exchange
data between building model and its controller. The
development of this new advent would potentially
enable integrated performance assessment of new
building control strategies that are not yet possible.

This type of approach must be validated through
application in a realistic system, especially since the
developed run-time coupling approach incorporates
advanced control strategies for integrated building
systems with time-varying delays. Issues concerning
the network’s reliability and utilization have been
discussed. The purpose of this research is to evolve
the prospects for integration in real building control
protocols.

Concerning the perspectives of this research, there is
a necessity to formalize the run-time coupling
mechanism that uses a connection-oriented socket.
TCP is a reliable mechanism that provides a better
reliability in communication and guarantees transfer
of data. An approach is envisaged to run-time couple
ESP-r and Matlab with TCP. This approach will be
based on an architecture that consists of reducing the
overhead by minimizing the time for communication,
including latency and bandwidth. Furthermore, this
overhead can be reduced by minimizing function
calls and optimizing the size of communication
buffers to data types need to be exchange.

Future research will involve applying this approach
to realistic application case study settings to prove
the success of implementing the current run-time
coupling. However, and more importantly, this
research will generate associated knowledge for
general and wider applicability.

ACKNOWLEDGMENT
Drs. A. Keizer of Centrum voor Taal en Techniek is
gratefully acknowledged for her helpful assistance in
editing this paper.

REFERENCES
ASHRAE 1997. A Standard Simulation Testbed for

the Evaluation of Control Algorithms and
Strategies, ASHRAE 825-RP, GA, USA.

Chervet, A., 2004. XML and Building Automation,
Journal ASHREA, N. 12, pp 24-32

Einarsson, B., 1995. Mixed Language Programming,
Part 4, Mixing ANSI-C with Fortran 77 or
Fortran 90, Proc. International Workshop on

Current Directions in Numerical Software and
High Performance Computing, Kyoto, Japan

Fumagalli, A. and Grasso, R., 1999. An Efficient
Asynchronous Simulation Technique for High
Speed Slotted Networks, Proc. 32nd Annual
Simulation Symposium, San Diego, USA.

IEA, 2002. Control Strategies for Hybrid Ventilation
in New and Retrofitted Office Buildings
(HYBVENT), Annex-35 Report, University of
Aalborg, Denmark.

Hughes, C. and Hughes, T., 2003. Parallel and
Distributed Programming using C++, Addison-
Wesley, Boston, USA.

Janak, M. 1997. Coupling Building Energy and
Lighting Simulation, Proc. Building Simulation,
Vol. 2, pp. 313-319, Prague, Czech Republic

Leffler J., Fabry R.S., Joy W.N., Lapsley P., Miller,
S. and Torek. C. 1993. An advanced 4.4.BSD
interprocess communication tutorial, Technical
report, Computer Science Research Group,
University of California, Berkeley, USA.

MathWorks, 2005. MathWorks’s website. <
http://www.mathworks.com/>

SmartHome, 2000. SmartHomeFurom’s website <
http://www.smarthomeforum.com/>

Schmitt, M., Acharya, A., Ibel, M. and Iancu, C.
2001. Service Sockets: A Uniform User-Level
Interface for Networking Applications. Technical
Report, Computer Science Department,
University of California at Santa Barbara, USA

Stevens, W.R., 1999. UNIX Network Programming.
Vol. 2: Interprocess Communications, 2nd Ed.,
Prentice-Hall, Upper Saddle River, NJ, USA

Ranganathan, M., Acharya, A., Edjlali, G., Sussman,
A. and Saltz, J., 1996. Flexible and efficient
coupling of data parallel programs, Proc. Parallel
Object-Oriented Methods and Applications, Santa
Fe, Mexico.

Van Paassen, A.H.C., 1986. Control of Indoor
Climate Technology, Journal A, Vol-22, N. 03

Yahiaoui. A., Hensen J.L.M. and Soethout L.L.
2003. Integration of control and building
performance simulation software by run-time
coupling, Proc. IBPSA Conference and
Exhibition, Vol. 3, pp. 1435-1441, Eindhoven,
Netherlands.

Yahiaoui, A., Hensen, J., and Soethout, L., 2004.
Developing CORBA-based distributed control
and building performance environments by run-
time coupling, Proc. 10th ICCCBE, Weimar,
Germany.

- 1384 -

	ABSTRACT
	INTRODUCTION
	BACKGROUND
	DEVELOPING RUN-TIME COUPLING FOR SIMULATIONS
	IPC USING INTERNET SOCKETS
	UDP vs. TCP protocol
	Exchange data with UDP

	DATA COMMUNICATION IN A REAL BUILDING
	IPC TO ESP-R AND TO MATLAB/SIMULINK BINDING
	Interfacing to ESP-r
	Interfacing to Matlab/Simulink

	RUN-TIME COUPLING OF BUILDING CONTROL STRATEGY
	Asynchronous Mode
	Synchronous Mode

	BUILDING CONTROL APPLICATION
	CONCLUSION AND PERSPECTIVES
	ACKNOWLEDGMENT
	REFERENCES

