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ABSTRACT

A practical way to estimate the accuracy of sound
field analysis by the finite element method in
building environments is presented here. The error
characteristics curves of several acoustic finite
elements are proposed first, then a guideline is given
for the 27-node acoustic finite element, developed by
the authors, to be employed in the analysis where
high accuracy is required. With the issue, sound
fields in a reverberation room (179m’) with several
absorbent conditions are analyzed by the method to
be compared with the measured values, which
showed fair agreement. In the process two ways of
absorption modeling are compared.

INTRODUCTION

In order to create building environments of better
quality, a close investigation on acoustic condition
must be of great importance. In the design process of
such buildings like concert halls, lecture rooms,
hospitals, residences and so on, where the acoustical
considerations should be foreground, the realities of
the physics of sound and the properties of human
hearing must be included in the main basis of the
design [1]. The computational methods can provide
powerful tools for the predictions of the physical
phenomena in such sound fields. This paper presents
a way to analyze the sound field by means of the
finite element method.

BRIEF SUMMARY OF APPROACHES
TO ACOUSTICAL NUMERICAL
ANALYSIS

The numerical methods, which are used to analyze
sound fields, can be roughly classified into:

1) Geometrical approaches
2) Wave approaches.

As was pointed out by Rindel [2], the standard two
classical geometrical methods are the Image Source
Method (ISM) and the Particle Tracing Method
(PTM). There is also their hybridized one, namely the

Hybrid Method.

Although the ISM can provide exact results in case a
room's shape is closed cavity, that is, in case no
diffracted wave coming around edges exists, the
relation between the number of images being taken
into account and its resulting accuracy is not clear
enough. Likewise, although PTM is simple and easy
to be applied on actual simulations, its theoretical
background is not yet clarified well.

On the other hand, finite element method (FEM),
finite differential method (FDM) and boundary
element method (BEM) are typical numerical
methods based on the wave theory, and recently they
have come to be intensively used with the progress of
digital computers. Note that the former two methods
divide a room's cavity into discretized nodal
potentials, and the values of the potentials are derived
by solving matrix equations. While, the last method
requires discretization only on the room's boundary.

Generally speaking, basic characteristics of these
methods are as follows: the major advantage of FDM
is simplicity, but it is not easy to deal with potentials
on meshes with irregular shapes by the method. On
the other hand, the other two methods are easy to be
applied onto the analysis of systems with complex
shapes. Considering about the computer
implementation, BEM is usually advantageous
because less degree of freedom is required and the
mesh of elements is easier to be generated in
comparison with the other two. Moreover, for
infinite-domain problems, since so-called
Sommerfield radiation is automatically fulfilled,
BEM can usually provide a simpler solution.

Nonetheless, among the numerical approaches of
sound field analysis in architectural environments, or
sound field in closed cavities, the finite element
method is advantageous in its broad range of
adaptability. Complex conditions, e.g. absorbent
materials or temperature distribution, are easy to be
involved in the FEM analysis. Although it may
require more degree of freedom compared to BEM,



the symmetric sparse matrices make the computation
simpler, and they are suitable to be operated in vector
and/or parallel processors of up-to-date.

It is well known, however, that in the analysis based
on FEM the resulting accuracy depends strongly on
the interpolation function that consists the element
used. While, the detailed mechanism of the
approximation of sound field in the architectural
environment has not been clarified yet because of the
complexity of the system. Likewise, despite of its
importance not enough information has provided yet
to model the absorbent materials in rooms properly.
In this respect, here, this paper focuses on the
following two subjects; one is the accuracy of
acoustic finite elements with various kinds of
interpolation functions; and another is the modeling
of absorbent wall conditions.

THEORETICAL DESCRIPTION

(1) Basic Formulae

The discrete formula of the sound field with sound
absorption can be obtained as follows: using the ad
joint system which works to describe dissipation,
then kinetic, potential, and dissipated energies can be
expressed in the following equations:
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Here, z, in equation (3) denotes the normal acoustic
impedance ratio at the wall's surface. And, the work
done by external force can be written in the form of
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Then, the Lagrangian of this system can be
L=V-T-W+J 5)
According to the ordinary finite elemental procedure,

sound pressure at an arbitrary point in an element "e"
can be approximated to be

={NH{n}, (6)

With this shape function, {N}, element matrices are
defined as follows.
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Assuming the locally reactiveness at the wall's
surface, the dissipating matrix can be obtained by

(Ol =2 ff, (0} (N} ®)

Substituting these matrices into equation (5), and
applying Hamilton's principle, the following discrete
matrix equation can be derived.

[MKB} +[CH B} +[KI{p} = p’u{W} ()

Or, using velocity potential and velocity of driving
force, v, equation (9) can be in the form of

[M{@} +[cl{ ]} +[K|{®} =-v{W}.  (10)

(2) Absorbent Element

In equation (8) the dissipation is modeled using the
surface impedance. The other way to denote the
dissipation in the system is to use some absorbent
finite elements. One that represents a rigid porous
material was given by Craggs[3] using the
generalized Rayleigh model;
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Combining these elements into equation (9) and
solving it with such kernels as the linear acceleration
method in the time domain, or as the modified
Choleski method in the frequency domain, the
acoustic response in a room with absorption can be
obtained[4][5].



Fig.1 27-Node acoustic element (a) in globa co-
ordinate of (X, y, z), and (b) in local co-ordinate of (&,
n. 4.
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Fig.2 Error characteristics curves of eigenvalue
approximation by Lin8, Lag27 and Spl27. Symbols
represent the difference of numbers of spatial division (Ix).

BASIC ACCURACIES OF ACOUSTIC
FINITE ELEMENTS

In order to find the basic mechanism that causes the
approximation errors in eigenanalysis on sound fields
in rooms, an eigenanalysis on a one-dimensional
sound field, a tube, with the length of 1[m] was
carried out. The elements applied were Lin8, Lag27
and Spl27. Here, Lin8 is the 8- node hexahedron
acoustic finite element with linear interpolation
function[6], while Lag27 and Spl27 are the 27-node
hexahedron elements with Lagrange and Spline
interpolation functions respectively (Fig.1).

The arrays of element divisions applied here were
chosen to examine only the characteristics in the
tube's longitudinal direction. Fig.2 shows the error
characteristics curves of eigenvalue approximation by
the three elements. Regardless of elemental divisions,
clear relation can be seen between the error, &, and
the ratio of A/L; here, A and L denote acoustic wave
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Fig.4 Approximation of eigenmode at "A./L, = 4"
by Lin8, Lag27 and Spl27. (n=5, A./L, = 4)

length and element length respectively. In the same
manner, the characteristics of Spl27 and Lag27 are
given there, where the L, means lengths of half
elements for these two elements. That is, the same L
and L. give the same numbers of nodal points. From
Fig.2, each types of element show clear relations
between the relative error in eigenvalue
approximation and the ratio of A/L ( or A/L,). The
relation characteristics do not change even if the
numbers of spatial divisions, /, be changed.
Furthermore, the followings can be found on each
element.

As for Lin8, the € is less than or equal to 20%
throughout the region A/L > 2. The & gradually
decreases as A/L increases in the region A/L > 2.5. On
the other hand, as for Spl27, the || is less and about
2% in the region A/L, > 4; and at A/L, =4, the &
becomes about 10%. It is remarkable that small and
stable errors within 1% can be seen throughout the



region A/L. > 4.4. Note that intermediate
characteristics between these two elements can be
seen on Lag27.

From the viewpoint of the approximation of mode
shapes, several mode shapes obtained through the
eigenanalysis are given in Fig.3. Each symbols
denotes discrete nodal value {¢@} of the modes n =2
and 4, and interpolated mode shapes are also given
there as each lines. Not much difference can be seen
among the element types.

In the same manner, mode shapes for the n=5 are
given in Fig.4. All the values obtained by the three
element types locate on a straight line, which results
the same interpolated sawtooth waves. It is the
reason that when A/L. = 4, the relative errors in
eigenvalue computation of the three element types
become the same value, i.e. 10%, as is shown in
Fig.2.

Thus, on the condition that A/L. > 4, successful
interpolation of peaks in mode shapes assures the
small errors in the eigenvalue approximation. The
errors can be estimated using Fig.2, and for 27-node
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Fig.5 Comparison of sound pressure response;

(a) Analytic solution vs FEM with Spl27 (5, 1, 1)-division,
(b) Analytic solution vs FEM with Spl27 (6, 1, 1)- and (7,

1, 1)- divisions.

elements the half of /L. gives required number of
elements per an acoustic wavelength.

APPLICATIONS

(1) One Dimensional Sound Field

To testify the issue given in the previous section,
sound pressure computation in a one-dimensional
sound field, 1.5 x 0.1 x 0.1 [m’], was carried out
using the Linear Acceleration Method to solve the
equation (9) in the time domain[3]. The wall
conditions were assumed to be hard and the sound
source to be a tone burst with the center frequency of
500 Hz and with 6-waves. The frequency range of the
tone burst lies roughly from 350 to 650 Hz.

For the Spl27 being applied to the sound field of
650Hz, a simple mathematics results that the array of
element division- (5, 1, 1) gives A/L, = 3.5, and that
the array of element division- (6, 1, 1) gives A/L, =
4.2. Hence, high accuracy can be expected for an
analysis with the latter array because A/L, is larger
than 4, while cannot with the former case.

With these preconsiderations, the results of the
computations are shown in Figs 5 and 6 comparing
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Fig.6 Comparison of sound pressure response;
(a) Analytic solution vs FEM with Lin8 (10, 2, 2)- and
(12, 2, 2)- divisions, (b) Analytic solution vs FEM
with Lin8 (20, 2, 2)- and (60, 2, 2)- divisions.



the difference between the arrays of element division.
At first, Fig.5 shows that the Spl27 gives fair
agreement if the array of element division is (6, 1, 1).
Only a small change can be found if the array is
increased to (7, 1, 1), or A/L, = 4.4 > 4, while the
agreement becomes worse if the array is reduced to
(5, 1, 1). These results just correspond to the
preconsideration described above. To the contrary, as
for the results of Lin8 in Fig.6, only small and
gradual refinements are observed even if the array is
increased from (10, 2, 2), or A/L = 3.5, to (60, 2, 2),
ML = 20.9. The degrees of freedom for the
computation with the array of element division- (10,
2, 2) by Lin8 are the same as those of division- (5, 1,
1) by Spl27.

With these results, it can be summarized up that
Spl27 gives excellent accuracy if A/L, > 4, but it is
sensitive to the insufficient element division. On the
other hand, Lin8 is not so sensitive against the
element division but requires a finer division if
higher accuracy is required.

(2) Three Dimensional Sound Field
Generally speaking, the sound fields in actual
buildings have complicated boundary conditions with
absorbent and/or reflective walls and floors. In this
section, for the purpose of providing a basis of
further applications, the sound field in a reverberation
room with nonparallel walls, floor and ceiling is
analyzed by FEM using Spl27 to be compared with a
measurement, which verifies the accuracy of the
FEM analysis with the issue given in the previous
section.

(2)-1 General Settings

The room's geometry is given in Fig.7, and the
measurement configuration is illustrated in Fig.8.
Three conditions (C-0, C-1 and C-2) of absorbent
conditions were chosen as follows:
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Fig.7 Geometry of reverberation room and its mesh
division applied in the FEM analysis( V=179mr).

C-0: no absorbent materials inside,

C-1: glasswool(32kg/m’) put on one of the walls,

C-2: glasswool(32kg/m’) put at the middle of the

floor.

The main target frequency range of the investigation
was set to be one third octave band with the center
frequency of 200Hz, and several investigations in one
twelfth octave band were carried out in case of need.

(2)-2 Configuration of FEM

In the FEM-computation, the authors employed both
surface-impedance model(z,) and absorbent-finite-
element model(e.;) to be compared each other, and
the former is based on the equation (8), while the
latter is based on the equation (11). The impedance
values of the materials were given by the
measurements using the transfer-function method in
an impedance tube. The material constants required
in the modeling of absorbent finite elements were
obtained through the comparison of computed
impedance values by means of FEM and Miki's
equation based on an empirical model[7][8].

The acoustic element employed was Spl27 and the
array of element division- (13, 13, 11) was chosen to
satisfy its minimum A/L. be more than 4.83, which
assures, based on the discussion in section 4, the
accuracy of eigenvalue approximation within 1%.
The kernel to solve the matrix equation (9) employed
was the modified Choleski method in the frequency
domain, by which discrete values of transfer function,
or sound pressure response, can be obtained in
frequency-by-frequency basis. The discrete values
were computed in the parallel machine distributed
into 32 processors and they were summed up to be
compared with the measured values in arbitrary
frequency band.

(2)-3 Configuration of Measurement
A one-twenty-fourth octave band SPL-measurement
at the center frequency of 200Hz was carried out

B C-1GlasswWool(H=1.035m) 37 C/\961m
B C-2Glasswool (H=0.8m)

"\, 189
B

1 . 27
E  gpH=1.38m) A

Fig.8 Configuration of measurements. Dots
represent computed/measured points, in C-0
and C-1, on the cross section at 1.2 m high.
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using a two channel digital filter (B&K 2144). The
SPL in one-third octave band was obtained by
summing up the measured values. The numbers of
measured points are 378 for both C-0 and C-1, while
the number for C-2 is 1001 that cover the five
surfaces of a block of glasswool as is shown in Fig.8.

(2)-4 Results and Discussion

At first, the effect of the absorption in the sound field
was examined by comparing the measured relative
sound pressure level (SPL) distributions (Fig. 9). The
difference of SPL between C-0 and C-1 rose up to
about 5 dB, and the difference becomes larger when
the receiving point is closer to the absorbent material.

Second, a comparison between FEM and
measurement on C-1 in one-third-octave band is
given in Fig. 10, and Fig.11 shows the detail of the
SPL distribution near the glasswool at one of the
corners of the reverberation room. In the figures,
there also compared is the difference of absorbent
modeling, e,, and z,. Fair agreement of FEM and
measurement can be seen at and around the peaks and
dips of SPL distribution in the sound field. As for the
absorbent modeling, only a slight difference can be
found in this case. Generally speaking, FEM can give
the detailed information of the potential distribution
in the system, so the three dimensional transfer
function distributions in sound fields in buildings can
be given by the method; and Fig.12 is an example of
them, which shows two-dimensional distribution of
SPL in the room; and, in addition, the SPL values of
FEM were obtained from the values of computed
transfer functions.

Finally, the difference of absorption modeling was
investigated. In the case of C-2, where the
transmitted sound through absorbent porous material
exists, the difference between the models can be
expected to be larger because the modeling- z, takes
into account only of locally reactiveness, while
modeling- e,, can represent extended reactiveness.
The comparison is given in Figs 13 (on the cross
section at 0.6m high) & 14 (at 0.8m high), in which
plotted are SPL values at the143 points around the
block of glasswool; and these points on the cross
sections are picked up from the measured 1001 points
originally. The FEM results with modeling- z, shows
some difference from the other two around the block
of glasswool, while FEM results with modeling- e,
generally agrees with measured values including the
points from 44 to 55 in the Fig.13 where the points
are on the surface of the glasswool. Hence, it can be
summarized up on the absorption modeling that the
modeling- z, is simpler and easier to be combined
into the system, but when the assumption of locally
reactiveness does not stand modeling- e., is better to
be applied.

CONCLUSIONS

The FEM sound field analysis with 27-node element,
Spl27, is discussed and finally its accuracy in an
application onto a three dimensional sound field in a
reverberation room has been confirmed
experimentally. The accuracy can be established by
controlling the dimensions of elements used to be
A/L, > 4, which leads about 1% relative error in
eigenvalue approximation. Example computations on
both tube and reverberation room have also validated
the accuracy of their sound pressure approximations.
Since detailed information of the sound field, such as
transfer function distributions in three dimensional
fields, can be obtained by the method with distinct
guideline for its resulting accuracy, further
investigations on and around room acoustics in
building environments become effective enough to be
dealt with from the viewpoint of wave/physical
acoustics.
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Research Meeting (Environment), No.38.2, pp.69-72, 1999 Q : Porosity,
(in Japanese) w: Angular frequency,

[M],[K],[C] : Mass, stiftness, and damping matrices,
{N} :Shape function,

NOMENCLATURE {W} : Distribution vector,

c, : Velocity of sound, {p} : Nodal sound pressure vector,

i : Square root of (-1), { @} : Velocity potential vector,

K. : Structure constant, B dp/at,

R : Flow resistance, Z : Complex conjugate of the complex number z,
z, : Specific acoustic impedance of air, [ 15{}": Transpose of [ 1, { }.

r
a

: Air mass, (z,=p.c, ),

p,, : Material density,

A

: Acoustic wavelength,
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Fig.12 Contour map of SPL distribution in the reverberation room. (C-1)
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