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ABSTRACT

The conparisson between neasurerments and sinulations is a
very inportant stage in the nethodology for enpirical whole
nodel validation of building energy sinulation prograns
devel oped within the PASSYS project. The aim of this paper is
to describe and to evaluate several statistical tools that
coul d be used for this purpose.

INTRODUCTION

In 1986 the PASSYS project was formed by the
Commission of the European Communities with the aim to
increage confidence in passive solar heating systems
through the development of a component testing
procedure, the development of a validation methodology
for building energy simulation programs, and the
development of better simplified design tools.

PASSYS involves research consortia from Belgium,

Denmark, France, Germany, Greece, Italy, the
Netherlands, Portugal, Spain and United Kingdom. The
work of PASSYS is undertaken by four specialist

subgroups addressing test methodology, simulation model
validation and development, simplified design tools
development and test site management.

The main objective of the model validation and
development subgroup (MVD) has been to approve/refine a
European validation methodology and to test this by
applying it to a building simulation program -~ the ESP
energy modelling system (Clarke 1985), which by the
Commission of the European Communities has been selected
as the European reference simulation program.

In the first phase of PASSYS (1986-89) main emphasis
has been devoted to review the theory behind the
different heat transfer processes of the program, to
check the corresponding source code segments, to apply
analytical verification and inter-model comparison where
possible, and to perform sensitivity studies.

In the second phase (1990-91), the attention has
been focussed on empirical model validation. This paper
deals with part of the methodology for empirical whole
model validation developed by the MVD subgroup. Several
statistical tools available to compare measurements and
simulations are described and its use for model
validation purposes discussed.

METHODOLOGY FOR EMPIRICA!, WHOLE MODEL VALIDATION

The aim of performing empirical whole model
validation is to detect if a model is capable of
describing reality correctly. This is, however, a non-
trivial task to perform, as it requires expertise in
experimental design, modelling principles and simulation
techniques. A methodology which ensures that one can
rely on the results from the validation and that a
maximun of information is obtained from the validation
study is necessary. The methodology developed by the MVD
subgroup comprises six stages (Ostergaard and van de
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Perre 1991):

1) Definition of the scope, type and nature of the
physical and numerical experiment.

2) Implementation of the physical experiment on site.
3) Process the measured data.

4) Perform simulations.

5) Analyse results.

6) Document data set and validation work.

The analysis of the results is a very important
stage of the methodology. Here we assess how the model
related to cbserved data, to prior knowledge, and to its
intended use. Deficient model behaviour make us to
reject the model or to recommend modifications if
possible, while good performance will develop a certain
confidence in the model. There exist several statistical
techniques for comparisson between measured and
gimulated values, testing the goodnes of different
aspect of the model. Within the MVD subgroup Sensitivity
Analysis and Residual Analysis have been applied.

As indicated before, this paper concentrates on
Residual Analysis. However, in order to introduce the
necessity of this kind of analysis, a short description
of the capabilities and limitations of Sensitivity
Analysis, which has been widely used for empirical model
validation tasks, is included.

Sensitivity Analysis

Using Differential Sensitivity Analysis (DAS) or
Monte Carlo Rnalysis (MCA), two types of sensitivity are
being evaluated within PASSYS: i) individual
sensitivities, which describe the influence on
simulations of variations in each individual input; and
ii) total sensitivities, due to the uncertainties in all
the input data.

A knowledge of the individual sensitivities has
geveral practical benefits for empirical whole model
validation purposes. To identify the inputs to which the
outputs are particularly sensitive (critical parameters)
and those to which they are insesitive, is essential to
guide the design of experiments. Useful information on
which signals to measure, where and when to measure
them, how to command them if possible, and which
parameters must be known ‘a priori’ with a minimun
uncertainty, can be achieved using Sensitivity Analysis
techniques.

The total uncertainty in outputs due to all the
inputs uncertainties enables to assess the resolution of
the models. This information can be used for empirical
validation studies when simulations are compared with
measurements. However, it is only a first approach to
the comparisson process: If measurements lead outside
the total uncertainty bands, we can conclude that the
model is deficient. On the contrary, if mesurements lead
within these bands, judgements about the validity of the
model require anhother kind of statistical tools.

Main disadvantages of Sensitivity Analysis when used
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to compare measurements and simulations are: i) Results
are very sensitive to the considered uncertainties in
input parameters; ii) These uncertainties mainly are
based on subjective judgement and experience; iii) The
method does not test dynamic parts of the model,
especially high dynamic parts. Anhother methods has,
therefore, also been applied.

Residual Analysis

In this paper the deviations between the simulated
values and the measurements are called the residuals.
This is perhaps a 1little misleading since the term
residual most often is used for the deviation between an
estimated model and the measurements - the so-called
prediction error. This convention has be adopted in this
paper although there is a conceptual difference between
simulation and prediction error.

For the prediction error case it is assumed that the
residuals from an estimated model behave as white noise
and are orthogonal to the model space. This means that,
if the models gives a sufficient description of the
measurements, then the residuals and the parameter space
are independent, or, let us put it another way, the
residuals do not contain any information on the
parameters. Then we are able to use statistical test
based on the residuals to deduce whether or not the
model gives a reasonable description of the
measurementg. Usually, model inadecuacy can be evaluated
by examining (see eg. Box and Jenkins 1976; Vandaele
1983): i) a residual plot; ii) the autocorrelation
function of the residuals, and 1iii) the cross-
correlation function between the explanatory variables
of the model and the residuals.

For the simulation error case the situation is
different. In this case it is most unlikely that the
residuals from the simulated model are orthogonal to the
model space. This means that, in the simulation
situation, the residuals can be used for characterizing
model inadequacies. The purpose of the following section
is to describe some methods used in statistics to
validate an estimated model, and to discuss how these
methods can be used in the simulation case.

STATISTICAL TOOLS
SIMULATIONS

TO COMPARE MEASUREMENTS AND

The most simple way to compare wmeasurements and
simulations is just to depict the trace of the simulated
values together with the measured values. This is
important and should never be overlooked. However, there
is readily a lot of questions asked: Is the mean value
of the differences between the simulated and measured
values zero? Are there deviations between the gtart of
the simulation and the end of the simulation? And how do
we characterize the deviations? This questions will be
considered in this section.

Let us introduce a system which can be described by
the nonlinear stochastic differential equation:

dx(t) = £(x(t),u(t),t,0,w(t))dt (1)

The vector f is a time dependent nonlinear function
of the state, x(t), the input, wu(t), the model
parameters, 8, and the noise, w(t).

The measurements are described by the equation;

y(t) = g{x(t),u(t),t,e(t)) (2)
where the vector of measurements is time dependent

nonlinear function of the state, the input and the
measurements error, e(t).
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The simulated system is

dx’(t) = £/(x'(t),u’(t),t,0))dt (3)
with the output of the simulation:

y'(t) = g'(x'(t),u’(t),t) (4)

Thus the simulations contains no description of the
noise part. There is a lot of reasons for deviations of
the symbols between the true system and the simulated
system. These are modelling approximations, unrecognized
and undescribed input signals, noise corrupted input
signals and measurement errors.

Let us define the residuals:
E(t) = y(t) - y'(t) (5)
Description of the Variation of the Residuals

Relevant characteristics of the residuals can be
investigated by analyzing present non-stationarities,
its persistence (autocorrelation function), and its
spectral properties (autospectrum).

In a similar way, if attention is focused on second-
order properties, the multivariate stochastic process
defined by the residuals and the explanatory variables
of the model - eg. solar irradiance, outdoor air
temperature, ... - could be caracterized by examining
the cross-correlation matrix of the process, its
gpectral matrix, and the partial coherency spectra if
explanatory variables are cross-correlated.

This section includes definitions and comments on
the meaning of these statistics. More information can be
found in specific books about these topics - eg.
(Jenkins and Watts 1968; Priesley 1981)

Stationarity

A stochastic process is said to be strictly
gtationary if its properties are unaffected by a change
of time origin; that is, the joint distribution of any
set of observations must be unaffected by shifting all
the times of observations forward or backward by any
integer amount. It is said to be stationary up to order
m if all its joint moments up to order m are independent
of the absgolute time. Usually, the term stationary is
applied to a stationary process up to order 2.

Different methods exist to check non-stationarity: 1)
Despict residuals; 2) Estimate mean and variance over
different time periods; 3) Analyze the autocovariance
function.

Systematic change in the level of a time series
(trend) is a typical kind of non-stationarity. Several
techniques exist to remove it. However, as it is
extremely difficult to tell whether a change in the
level of the series is due to a deterministic or to a
stochastic trend, the differencing method is one of the
most effective removing the trend present in all types
of series. This method consist of substracting the
values of the observations from one another in same
prescribed time-dependent order.

RAutocorrelation Function

A stationary stochastic process €(t)
described by its autocovariance function

is simply

Yo (u) = B [(€(t)-p,) (€(t+u)-p,)] (6)

The displacement u (u=t2-t1) is called the lag. The acvf



shows how the dependence between adjacent values in the
stochastic process changes with lag u. It is specially
ugeful to detect "local correlations”, that is whether
neighboring points of the process are correlated.

Since Us(u) depends on the scale of measurement of €,
it is convenient, in comparing two time series with
possibly different scales of measurement, to define a
normalized quantity called the autocorrelation function
(acf)

Pew) = ¥ /Y (O (7)
being OEZ = YE(O) the variance of the process. Note
that P (u) lies between limits -1 and +1, corresponding

to the complet negative and positive linear dependence.

Autospectrum

An equivalent description of a stationary stochastic
process is provided by its power spectrum, which is the
Fourier transform of the acvf.

= -j2
T (f) = ¥ (w) eI au (8)

The power spectrum curve shows how the variance of
the stochastic process is distributed with frequency. It
has an inmediate physical interpretation as an
energy/frequency distribution.

As it was for the acvf, it is somtimes useful to
normalize T (f) by dividing by the variance 0°.. The
function ) ‘

T (£)/0°, (9)

is called the spectral density function, which is the
Fourier transform of the acf.

Cross—correlation Matrix

Two stationary stochastic process {€(t), X;(t)} are
usefully described in the time domain by their auto- and
cross covariance functions. The cross—-covariance
function (ccvf) of lag u with X,(t) leading €(t)

Y ei(v) = B [(€(t)=p) (X, (t+u)-p;) ] (10)
measures the linear dependence existing between adjacent
values in both stochastic processes - local correlation.
For instance, if neighboring points in two time series
are cross correlated, it would be expected that the ccvf
will be large in the neirborhood of the origin and small
at valueg distant from the origin.

To study the interactions between two processes with
possibly different scales of measurement, it is
necessary to define the cross-correlation function (ccf)

Pei(w) =¥ () o, 0 {11)

For multivariate processes, if attention is focused
on second-moment properties, the process can be
characterized by the called lagged covariance matrix

Vi) = (¥} i3 = €1,2,..0q (12)

Spectral Matrix

The theoretical cross covariance function of two
stochastic processes has a Fourier transform called the
cross-spectrum, Pﬁ(f),

T . (f) = ¥ etiarfu gy (13)

-0

ei(

which can be represented as the product of the cross
amplitude spectrum, aei(f)' and the phase spectrum,
¢§i(f). The cross amplitude spectrum shows whether
frequency components in one series are associated with
large or small amplitudes at the same frequency in the
other series. Similarly, the phase spectrum shows
whether frequency components in one series lag or lead
the components at the same frequency in the other
series.

A more useful quantity than the cross amplitude
spectrum, is the coherency spectrum

& (£)
2 2
ko (f) = —m—mmmmmeeee H (0< k% (£) <1) (14)
T (f) Ty(f)
This statistic is useful in practice becausge it provides
a non-dimensional measures of the correlation between
two time series as a function of frequency. On an other
hand, the coherency spectrum is unaltered when filetring
operations are performed on the original time series.
Thus is to be preferred to the cross amplitude spectrum.

For a multivaraite process, the matrix of auto- and
cross spectra,

I‘(f)={1‘ij) ; i, =¢€,1,2,...,q (15)

is called the spectral matrix.

The Squared Multiple Coherency Spectrum

For our purposes, it will be useful to consider the
stochastic processes €(t), X1(t), coy xq(t) related
linearly by the general dynamic model

€(t) - p, = hy () {Xj(t=u) = py} du + ... (16)

+ he q(W) {X (t=u) ~ pg} du + Z(t)

©

where X,(t) (i=1,2,..,q) are the explanatory variables of
the model (inputs), Z(t) is an independent and white
noise, by (i= 1,2,...,d,9+1) is the mean value of the i
process and h (i= 1,2,..,q) is the impulse response
function from the input X,(t) to the output €(t).

The spectrum of the noise process Z(t)
q
T,(f) =T () - Z H_ (£) T (f) (17)

i=1

could be written as

Ty(£) = T(£) [1 = Ky ()] (18)
where
1 q
Kz, qff) = mmm== T Hg(f) T(h) (19)
re(f) i=1

is called the squared multiple coherency spectrum of the
output process and the q input processes. The multiple
coherency spectrum measures the proportion of the output
spectrum which can be predicted from the inputs at
different frequencies.

The Squared Partial Coherency Spectra.

In the case of multivariate time series, it is
useful to be able to measure the cross spectrum between
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the residulas (output) and one of the inputs processes
after allowance is made for the effect of the other
input processes. This 1leads to the partial cross
spectrum, which is the frequency domain analog of the
partial correlation.

Predicting the output €(t) from past values of all
the inputs except one of them (eg. X (t)), leads to
residuals that will be represented by €.(t). Similarly,
predicting the input X (t) from all the other inputs
leads to the residuals €.(t). The partial cross
covariance function between X (t) and €(t), after
allowing for Xj(t), j<>i, is defined as the cross-
covariance function between the residuals €.(t) and
es(t). The partial cross spectrum is the Fourier
transform of the partial cross covariance function. And
the partial cross spectral density (or partial cross
gpectrum) is defined as the quotient between the partial
cross spectrum and the squared root of the autospectra
of the residuals € (t) and qu(t).

For g inputs, the partial cross spectrum between the
output €(t) and the input X () is given by

”ek(f)
ke (£) = = =m=mmmmmmm—mee ©(20)
M () T (€)}

where 7 is the minor of the element I\m in the spectral
matrix of all (g+l) variables. The squared partial
coherency, kzn'x' is the squared modulus of (20) and the
partial phase 'spectrum, $ c1gs its argument. The first
statistic measures the squared covariance "at frequency
f" between the processes €(t) and X (t) when allowance is
made for the influence of the other inputs. The second
one, measures the "direct" phase difference between both
processes after allowing for the phase differences
between Xk(t) and the other inputs and between €(t) and
the inputs Xj(t) with j<>k.

Some Tests for White Noise
A white noise sequence €(t) is a sequence where the
autocovariance function is zero for lags other than

zero,

Cov[€E(t),€(t+k)] = O for k <> 0 {21)

In this section some rather simple tests for white

noise are outlined. These tests are widely used in time
series analysis for validating an estimated model, since
the fundamental assumption on e.g. ARMAX-models is that
the stochastic process is the output of a linear
transfer function with white noise input.

A Sign Test

For a white noise sequence with zero mean we will
expect that the probability for a change in the sign of
the residual from time to time is 1/2, i.e.

P{change in sign from t-1 to ¢t} = 1/2 .
On the assumption that the residual is white noise,

the individual changes in sign will be independent,
hence

Total number of change in sign ® B(N-1, 1/2) ,
where N is the total number of residuals. For large
values of N the Binomial distribution can be

approximated by the normal distribution, since

B (N-1, 1/2) ® N ((N-1)/2, (N-1)/4) (22)

for large values of N. Hence the total number of changes
signs can be compared with the above normal
distribution, and if the number is outside some
resonable confidence limits then the assumption of white
noise must be rejected.

Test Based on the Autocorrelation Function

If the residuals is white noise then
~
Pet®) € pprox. N (0s 1/N) (23)

Furthermore,
independent.

the individual values are approximately

The above fact can be used to test individual values
in the autocorrelation function. 95% confidence limits
for single autocorrelation value is thus 11.96 J?l/N).

A test based on the important part of the total
autocorrelation function is the Portmanteau lack of fit
test:

L3
Q=N (P + yas(e)(z)2 + (24)
cee * Fe(e)(m)z) eappr«wx. xz(m)

where a reagonable value of m is about 15 - 30. If k
parameters is estimated then the degree of freedom is
(m-k) instead of m.

The above test quantity is simply based on the
fundamental fact that a sum of m sggared independent
normal distributed variables becomes X°-distributed with
m degrees of freedom.

As described the normality of the estimated values
of the autocorrelation of the residuals is only
approximative. A more precise calculation leads to the
Ljung-Box statistics:

"L (25)
Q= NN-2) T PP /(NK) €, X(m)
k=1

Test in the Frequency Domain

For the frequencies £, = i/N; i=0,1, .... , (N/2),
the periodogram for the residuals is calculated as

. N N (26)
I(f;) = 1/N [(Z €, cos 2mE£)% + (T €, sin 2m£t)?)
t=1 t=1

which is a description in the frequency domaine of the
variation of the residuals, where I(fi) tells how much
of the variation of the residuals which is at the
frequency f;.

The Cumulated Periodogram is then defined as:

j N/2
~ A
C(£) = [ I(£)]1 / (B

i=1 i=1

I(£)) (27)

which is a non-decreasing function of the frequencies.

For white noise the variation is equally distributed
on all frequences (hence the term ‘white’), and the
total variation of N observations is equal to NO‘Z, hence
the theoretical periodogram for white noise is

I(f;) = 202 (28)

and the theoretical cumulated periodogram is thus a
straight line from (0,0) to (0.5, 1). On the assumption
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that the residuals is white noise, then the estimated
cumulated periodogram will be close to that straight
line. The closseness is evaluated by a
Kolmogorov~Smirnov test, which are known in tests for
given distribution functions.

1f the estimated cumulated periodogram falls outside
the lines given by the confidence limits, then the white
noise assumption must be rejected. Furthermore, the
frequency where the estimated line falls outside
indicates that the residuals still contains important
correlation in time for that frequency.

Some tests for non-orthogonality

To test whether two time series are correlated or
not, several procedures exist. Provided both time series
have been prefiltered to convert them to white noise,
the sample cross-correlation function (ccf) of the
filterd series can be used to test whether they are
correlated. However, the ccf is useful only in detecting
local correlation. 1If there is a tendency for the ccf
to contain periodoc components, these may not be
detected using the ccf. Hence it is also necessary to
use frequency-domain tests.

Test based on the cross—correlation function.

If the residuals €(t) and the explanatory variable
X;(t) are uncorrelated processes then

;’si(k) € approx. ¥ (0, 1/N) (29)

The above fact can be used to test individual values
in the cross-correlation function. 95% confidence limits
for single correlation value is thus £1.96 Y{1/N).

As indicated before, the normality of the estimated
values of the cross-correlation between the residuals
and the explanatory variables is only approximative. A
more precise calculation leads, as in the case of the
acf, to the Ljung-Box statistics:

m
Q% = N(N-2) =
k=1

p k)2 /(N-k) € ®(m) (30
Peicer k)" /(BKk) - Eqpprgy, X7(m) (30)

Test in the frequency domain.

If no correlation exist between the residuals and
the set of explanatory variables of the model, then in
(17)

H,=0 ; k=1,2,...,9 (31)
and, consequently,
kzﬂznq(f) =0 (32)

Hence, a check for non-zero squared multiple coherency
would be useful to test the hypothesis that non zero-
correlation exists between the whole set of inputs and
the residuals.

Such a test is based in the fact that the random
variable

~

kzﬂzuq(f) v-2q

%2
1-k ﬂZUq(f) q

(33)

is distributed as F, , ,,- q is the number of inputs and
v the variance ratio of the spectral window used to
estimate the squared multiple coherency.

If the hypothesis of non-zero squared multiple

coherency is unacceptable, other interesting test could
be use in order to know how each input contributes to
explain the residuals. Such a test is based on the
squared partial coherency. This statistic is related
with the squared multiple coherency by

- %2
2 1 Kp gD
1-k kE“((f) i (34)
1 = k%, ()
where kik(f) is the squared multiple coherency

calculated without considering the input X, (t).
If €(t) and X (t) are uncorrelated processes, then
1-% (£) = 1 - K2 (£) (35)
€12...q ek

and
KB (f) =0 - (36)

Hence, the spectral estimator of the squared partial
coherency could be used as a test for non-zero cross
correlation between residuals and each input in the
frequency domain. Zero values mean that no correlation
exists between the considered input and the residuals,
unity values mean that the residuals could be completly
recovered from the input, and values between 0 and 1
correspond to situations where the residuals can be
partially predicted from the input.

Some Suggestions for Model Validation

This part of the paper includes some suggestions on
the use of the preceeding concepts and tests for
empirical whole model validation purposes:

1) Depict simulations and measurements, or,
alternatively, the residuals.
2) Characterize the residuals by mean, variance,

autocovariance function and spectrum. The spectrum tells
us about hig frequency versus low frequency variation.
3) Apply some simple test for white ncise on the
residuals. Perhaps only the sign test. The quantities
given by the other tests are rather useless for model
validation, since we do not expect the residuals to be
orthogonal to the model.

4) Characterize the multivariate process {residuals,
explanatory variables of the model}. As we are looking
for causal relations between residuals and explanatory
variables, the most interesting characterization of the
process could be done by examining the crocs-correlation
functions between residuals and inputs, the squared
multiple coherency of the whole process and the squared
partial coherency corresponding to each input. Last
option is better than to anlyze the squared coherency
because inputs are frequently cross correlated.

5) If no clear information could be achieved simply
examining the above mentioned statistics, apply some of
the proposed tests for non-zero correlation tketween
residulas and inputs.

AN EXAMPLE ON THE USE OF THE PROPOSED METHODOLOGY

This section includes an example of using the above
described statistical tools.

The System

The system is a PASSYS test cell. The cell’s
structure is based on a "hard casing" concept, where the
supports and the insulation are separated. The cell is
prefabricated with a rugged steel frame shelved with
mineral wool. The outer surfaces are covered with
chipboard and, finally, shielded with stainless steel.
The inner surfaces are insulated by styrofoam to give a
constructional U-value of < 0.1 W/m°K. Internally the
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cell has two zones, a service room and a test room,
divided by a well insulated partition containing =&
sealed connecting door. The possibility exists for
attaching different south wall components. During the
analyzed experiment, an opaque calibration wall was
incorporated as south component.

The Data

The analyzed data sets were supplied by ABACUS,
University of Strachclyde, UK. From 7th February to 10th
March 1989, an experiment was carried out on two test
cells with calibration wall. One cell free-floated acted
as control, the other underwent the following schedule:
a preconditioning period, a four-hour rectangular
radiant heat pulse of 2kW followed by a period of free-
floating until the cell was within 0.5 C of the control
cell, a two hour rectangular convective heat pulse of
2kW followed by a similar cooling period, five days of
constant 30 C internal temperature heating, and a final
free-floating decay. Service room temperatures were
constant troughout, at about 20 C. The measurement taken
were standard climate parameters, internal air
temperature and energy input in the heating periods.

Sensitivity Analysis

ESP simulations were run for the period 7th February
to 9th March 1989, during the period of the experiment,
and therefore measured climatic data were used in the
simulations. The output parameter of interest in this
case was the internal air temperature. The assumed
geometry for the test cell, its thermo-physical and
optical properties, and the definition of its
surroundings and its operation modes, can be found in
(Pinney and Strachan 1989). This document also includes
the list of parameters we are varying in the simulations
and their assumed uncertainties.

Figure 1 shows the resulting base case and
associated wuncertainty bands estimated by DsA
techniques, together with the measured internal air

temperature and the prevailing external temperature.
Measurements are inside the uncertainty bands except for
the initial period. No more than 10% of the measured
values for the indoor air temperatute leads outside
these bands. Dangerous conclusions could be achieved
from this observation if no more analysis were performed
comparing measurements and simulations. It will be

necessary, at least, to perform simply visual
comparissons between measurements and base case
simulations, which are assumed as the most probable

response of the system.

Residual Analysis

When measurements leads inside the uncertainty
bandg, Jjudgements about the validity of the model
require another kind of analysis. Using the above
described statistical tools, an analysis on the
residuals was performed.

Characterizing Residuals

Looking at figures 1 and -2, several relevant
characteristics of the residuals can be derived:

i) Residuals show a clear trend. From time 0 to time
150, they are changing from +2C to -2C values. Then,
they fluctuate around 1.5C.

ii) Residuals show two clear peaks. One in the radiant
heat pulse period (+7C) and the other in the convective
heat pulse period (-5C).

iii) Measured temperatures are generally lower than the
simulated ones. It seems that radiant heat input leads
to underestimations and convective heat input to

overestimations of the indoor air temperature.
iv) The measured decay is faster than the gimulated one.

For the whole period of measurements/simulations mean
and variance values for the residuals were -1.4C and
1.3C2, respectively. A mean value different from zero
means that the model, with the set of selected values
for its parameters, can not represent adequately the
stationary hehaviour of the test cell. The variance is
a measure of the fluctuations around the mean value.

Persistency in the residuals is analyzed by
examining its sample autocorrelations estimated (Fig.
3). As residuals are non-stationary, a first oder
differncing process has been applied on the residuals
before to estimate them. The resulting autocorrelations
show a spike at lag 4, and they start to be zero from
lags greather than 6. This two observations are enough
to conclude that the residuals do not behave as white
noise. No other statistical test for white noise are
necessary.

How the variance is distributed over freguency is
analyzed through the estimated density power spectrum of
the residuals. Most part of the variance is concentrated
at low frequency. After differencing the residuals -
high-pass filter -, the resulting spectrum (Fig. 4) show
two wide bands where the variance is concentrated: one
around 0.12 h™! and the other around 0.35 h™!. The model,
with the set of selected values for its parameters, not
only fails when reproducing stationary or very low
dynamic regimes, but also when simulating intermediate
and high dynamic regimes.

The Multivariate Process: Residuals/Inputs

More information about what may cause deviations
between measurements and simulations could be derived
from the analysis of the multivariate process
residuals/inputs.

A first analysis could be performed on the sample
cross correlations estimated. Figures 5 and 6, show how
residuals are correlated with service room air
temperatures (fig.4) and with power heating (fig.6).
Before to estimate their cross-correlations, these time
series have been differentiated. From lag -10 to 10,
both curves show correlations values outside the 95%
confidence bands and pronounced patterns, especially in
the case of the power heating. No more cross-
correlations curves are shown - eg. solar irradiance,
outdoor air temperature, wind velocity, wind direction
and relative humigity - ©because no significant
correlation has been detected between residuals and
these other inputs.

In the frequency domain, two kind of analysis have
been carried out examining the squared multiple
coherency and the squared partial coherencies.

Figures 7 includes the squared multiple coherency and
the squared partial coherency for the power heating and
for the service room air temperature estimated after
differencing the original time series. Figure 8 contents
the same information but for the non-~differenciated time
series., Because the analyzed set of time series is not
stationary, this second procedure is not applicable in
a strict sense, but it could be useful as a first
approach to investigate the model behaviour at very low
frequency.

Main conclusion when examining the estimated squared
multiple coherency is that a great proportion of the
residuals spectrum can be predicted from the explanatory
variables of the model. When examining the estimated
squared partial coherencies, the conclusions are: i) The
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most relevant input to explain part of the residuals at
intermediate and high frequencies (fig.7) is the power
heating, and, in a second position, the service room air
temperature. ii) At very low frequencies (fig.8), not
only these inputs present a non-irrelevant squared
partial coherency, but also the outdoor air temperature
(k2 % 0.3) and the solar irradiance (k2 X 0.2).

Conclusions

Under the imposed experimental conditions, the
model, with the set of selected values for its different
parameters, does not describe adequately the stationary
nor the dynamic behaviour of the test cell.

Main problems detected at intermediate and high
frequencies are related to the power heating. May be
hypothesis about convective coefficients, air
stratification, optical properties of the indoor
surfaces or about the convective/radiative split of the
heat input must be revised.

At low frequencies, the detected problems are not
only related to the above mentioned quantities, but also
to the outdoor air temperature and to the solar
irradiance. Modifications on parameters conecting the
two cell’s zones, on the hypothesis about infiltrations
and on the hypothesis of unidimensional heat conduction
trough walls - edge effects are very important in a test
cell - could be necessary.

The decorrelation detected between residuals and
other inputs different than the power heating or the
service room air temperature, does not mean that the
corresponding physical processes or parameters linked to
them are well represented in the model. Note that the
main forcing functions for the test cell during the
experiment were the power heating and the service room

temperature - test «cell with calibration wall.
Information about the adequacy of the ESP when
representing physical processes involving solar

irradiance, outdoor air temperature, relative humidity,
wind velocity or wind direction will required another
kind of commponent or experiment.

SUMMURY AND CONCLUSIONS

Several statistical tools have been described and
its use for empirical whole model validation discussed.
Main conclusion of this paper could be:

i) Sensitivity analysis is a useful tool to guide
experiments, but it is not very efficient when trying to
detect model inadequacy. Usually uncertainty bands are
too large to draw any firm conclusions about the model’s
validity. On the other hand, it cannot by itself show
where errors are ocurring in the model. So there is a
need of another kind of validation techniques.

ii) Residual analysis appears as a promising
alternative. It gives useful information not only to
determine how the model relates to reality, but also
about what could be the causes of a deficient model
behaviour.

Model’s validity to describe the stationary regime of
a system could be analyzed through the mean value of the
residuals.

Variance is a second measure of the model’s ability to
described the observed data. How the variance is
distributed over frequency can be analyzed using the
estimated spectrum of the residuals. Dynamic parts of
the model could be checked from this kind of analysis.

What proportion of the residual’s spectrum can be

predicted from the explanatory variables of the model
is estimated by the squared multiple coherency. The
effect of unrecognized and undescribed input signals,
noise corrupting inputs and measurement errors remain in
the called noise spectrum.

Where errors are ocurring in the model can be
investigated wusing the estimated squared partial
coherencies, which show what inputs can recover part of
the spectrum of the model. Hence, an approach to to
knowledge of what physical process or input parameters
are no adequately represented in the model is achieved.
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